Algebras generated by a subnormal operator

Authors:
Robert F. Olin and James E. Thomson

Journal:
Trans. Amer. Math. Soc. **271** (1982), 299-311

MSC:
Primary 47D25; Secondary 47B20

DOI:
https://doi.org/10.1090/S0002-9947-1982-0648094-6

MathSciNet review:
648094

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use the notion of generalized Toeplitz operators to obtain some basic results concerning the -algebra generated by a subnormal operator. We apply these results to problems concerning the intersection of with rationally closed algebras generated by . In particular, we prove that . The spectral inclusion property for generalized Toeplitz operators with symbols in is also considered.

**[1]**W. Arveson,*An invitation to*-*algebra*, Graduate Texts in Math., Springer-Verlag, New York, 1976.**[2]**S. Axler, J. B. Conway and G. McDonald,*Toeplitz operators on Bergman spaces*, preprint. MR**658979 (83i:47034)****[3]**J. Ball, R. Olin and J. Thomson,*Weakly closed algebras of subnormal operators*, Illinois J. Math.**22**(1978), 315-326. MR**0477853 (57:17355)****[4]**C. A. Berger and B. I. Shaw,*Selfcommutators of multicyclic hyponormal operators are trace class*, Bull. Amer. Math. Soc.**79**(1973), 1193-1199. MR**0374972 (51:11168)****[5]**-,*Hyponormality*:*its analytic consequences*, Amer. J. Math. (to appear).**[6]**J. Bram,*Subnormal operators*, Duke Math. J.**22**(1955), 75-94. MR**0068129 (16:835a)****[7]**J. Bunce,*Characters on singly generated*-*algebras*, Proc. Amer. Math. Soc.**25**(1970), 297-303. MR**0259622 (41:4258)****[8]**J. Chaumat,*Adhérence faible étoile d'algèbres de fractions rationnelles*, Publ. Math. d'Orsay No. 147, U.E.R. Math., Univ. de Paris XI, Orsay, 1975. MR**0442692 (56:1073)****[9]**J. B. Conway and R. Olin,*A functional calculus for subnormal operators*. II, Mem. Amer. Math. Soc. No. 184 (1977). MR**0435913 (55:8864)****[10]**R. G. Douglas,*Banach algebra techniques in operator theory*, Academic Press, New York, 1972. MR**0361893 (50:14335)****[11]**T. Gamelin,*Uniform algebras*, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR**0410387 (53:14137)****[12]**-,*Rational approximation theory*, Course Notes, 1975.**[13]**W. Hastings,*The approximation point spectrum of a subnormal operator*, preprint.**[14]**I. N. Herstein,*Topics in algebra*, Blaisdell, Waltham, Mass., 1964. MR**0171801 (30:2028)****[15]**G. Keough,*Subnormal operators, Toeplitz operators, and the spectral inclusion theorem*, Indiana Univ. Ph. D. Thesis, 1979.**[16]**R. Olin,*Functional relationships between a subnormal operator and its minimal normal extension*, Pacific J. Math.**63**(1976), 221-229. MR**0420324 (54:8338)****[17]**R. Olin and J. Thomson,*Algebras of subnormal operators*, J. Funct. Anal.**37**(1980), 271-301. MR**581424 (82a:47024)****[18]**C. Pearcy,*Some recent developments in operator theory*, CBMS Regional Conf. Ser. in Math., no. 36, Amer. Math. Soc., Providence, R. I., 1978. MR**0487495 (58:7120)****[19]**D. Sarason,*Weak-star density of the polynomials*, J. Reine Angew. Math.**252**(1972), 1-15. MR**0295088 (45:4156)****[20]**A. L. Shields and L. J. Wallen,*The commutants of certain Hilbert space operators*, Indiana Univ. Math. J.**20**(1971), 777-788. MR**0287352 (44:4558)****[21]**J. G. Stampfli,*Analytic extensions and spectral localization*, J. Math. Mech.**16**(1966), 287-296. MR**0196500 (33:4687)****[22]**M. A. Subin,*Factorization of parameter-dependent matrix functions in normal rings and certain related questions in the theory of Noetherian operators*, Mat. Sb.**73**(1967), 610-629; English transl. in Math. USSR-Sb.**2**(1967), 543-560. MR**0217638 (36:727)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47D25,
47B20

Retrieve articles in all journals with MSC: 47D25, 47B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0648094-6

Article copyright:
© Copyright 1982
American Mathematical Society