Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Classification of oriented equivariant spherical fibrations


Author: Stefan Waner
Journal: Trans. Amer. Math. Soc. 271 (1982), 313-324
MSC: Primary 57S10; Secondary 55R05
DOI: https://doi.org/10.1090/S0002-9947-1982-0648095-8
MathSciNet review: 648095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Classifying spaces for oriented equivariant spherical fibrations are constructed, and the notion of an equivariant $ SF$-fibration is introduced. It is shown that equivariant $ SF$-fibrations are naturally oriented in $ RO(G)$-graded equivariant singular cohomology.


References [Enhancements On Off] (What's this?)

  • [D1] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979. MR 551743 (82c:57025)
  • [LMMW] G. Lewis, J. P. May, J. McClure and S. Waner, Ordinary equivariant cohomology theory, Univ. of Chicago (in preparation).
  • [M1] J. P. May, $ {E_\infty }$ ring spaces and $ {E_\infty }$ ring spectra, Lecture Notes in Math., vol. 577, Springer-Verlag, Berlin and New York, 1977. MR 0494077 (58:13008)
  • [M2] -, Classifying spaces and fibrations, Mem. Amer. Math. Soc. No. 155 (1975). MR 0370579 (51:6806)
  • [M3] -, Homotopic foundations of algebraic topology, Mimeographed notes, Univ. of Chicago.
  • [W1] S. Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980), 385-405. MR 558180 (82m:55016c)
  • [W2] -, Equivariant fibrations and transfer, Trans. Amer. Math. Soc. 258 (1980), 369-383. MR 558179 (82m:55016b)
  • [W3] -, Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258 (1980), 351-368. MR 558178 (82m:55016a)
  • [W5] -, $ RO(G)$-graded equivariant singular cohomology, preprint, Univ. of Virginia, 1980.
  • [W6] -, Oriented $ G$-manifolds, preprint, Univ. of Virginia, 1980.
  • [W7] R. Wirthmuller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373-390. MR 0343260 (49:8004)
  • [MHW] J. P. May, H. Hauschild and S. Waner, Equivariant infinite loop space theory (in preparation).
  • [L1] R. Lashof and M. Rothenberg, $ G$-smoothing theory, Proc. Sympos. Pure Math., vol. 32, part 1, Amer. Math. Soc., Providence, R. I., 1978, pp. 211-266. MR 520506 (80h:57030)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S10, 55R05

Retrieve articles in all journals with MSC: 57S10, 55R05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0648095-8
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society