Classification of oriented equivariant spherical fibrations

Author:
Stefan Waner

Journal:
Trans. Amer. Math. Soc. **271** (1982), 313-324

MSC:
Primary 57S10; Secondary 55R05

DOI:
https://doi.org/10.1090/S0002-9947-1982-0648095-8

MathSciNet review:
648095

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Classifying spaces for oriented equivariant spherical fibrations are constructed, and the notion of an equivariant -fibration is introduced. It is shown that equivariant -fibrations are naturally oriented in -graded equivariant singular cohomology.

**[D1]**T. tom Dieck,*Transformation groups and representation theory*, Lecture Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979. MR**551743 (82c:57025)****[LMMW]**G. Lewis, J. P. May, J. McClure and S. Waner,*Ordinary equivariant cohomology theory*, Univ. of Chicago (in preparation).**[M1]**J. P. May,*ring spaces and**ring spectra*, Lecture Notes in Math., vol. 577, Springer-Verlag, Berlin and New York, 1977. MR**0494077 (58:13008)****[M2]**-,*Classifying spaces and fibrations*, Mem. Amer. Math. Soc. No. 155 (1975). MR**0370579 (51:6806)****[M3]**-,*Homotopic foundations of algebraic topology*, Mimeographed notes, Univ. of Chicago.**[W1]**S. Waner,*Equivariant classifying spaces and fibrations*, Trans. Amer. Math. Soc.**258**(1980), 385-405. MR**558180 (82m:55016c)****[W2]**-,*Equivariant fibrations and transfer*, Trans. Amer. Math. Soc.**258**(1980), 369-383. MR**558179 (82m:55016b)****[W3]**-,*Equivariant homotopy theory and Milnor's theorem*, Trans. Amer. Math. Soc.**258**(1980), 351-368. MR**558178 (82m:55016a)****[W5]**-, -*graded equivariant singular cohomology*, preprint, Univ. of Virginia, 1980.**[W6]**-,*Oriented*-*manifolds*, preprint, Univ. of Virginia, 1980.**[W7]**R. Wirthmuller,*Equivariant homology and duality*, Manuscripta Math.**11**(1974), 373-390. MR**0343260 (49:8004)****[MHW]**J. P. May, H. Hauschild and S. Waner,*Equivariant infinite loop space theory*(in preparation).**[L1]**R. Lashof and M. Rothenberg, -*smoothing theory*, Proc. Sympos. Pure Math., vol. 32, part 1, Amer. Math. Soc., Providence, R. I., 1978, pp. 211-266. MR**520506 (80h:57030)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57S10,
55R05

Retrieve articles in all journals with MSC: 57S10, 55R05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0648095-8

Article copyright:
© Copyright 1982
American Mathematical Society