Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Simplexes of extensions of states of $ C\sp{\ast} $-algebras


Author: C. J. K. Batty
Journal: Trans. Amer. Math. Soc. 272 (1982), 237-246
MSC: Primary 46L05; Secondary 46L55
DOI: https://doi.org/10.1090/S0002-9947-1982-0656488-8
MathSciNet review: 656488
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ be a $ {C^\ast}$-subalgebra of a $ {C^\ast}$-algebra $ A$, $ F$ a compact face of the state space $ S(B)$ of $ B$, and $ {S_F}(A)$ the set of all states of $ A$ whose restrictions to $ B$ lie in $ F$. It is shown that $ {S_F}(A)$ is a Choquet simplex if and only if (a) $ F$ is a simplex, (b) pure states in $ {S_F}(A)$ restrict to pure states in $ F$, and (c) the states of $ A$ which restrict to any given pure state in $ F$ form a simplex. The properties (b) and (c) are also considered in isolation.

Sets of the form $ {S_F}(A)$ have been considered by various authors in special cases including those where $ B$ is a maximal abelian subalgebra of $ A$, or $ A$ is a $ {C^\ast}$-crossed product, or the Cuntz algebra $ {\mathcal{O}_n}$.


References [Enhancements On Off] (What's this?)

  • [1] J. Anderson, Extensions, restrictions and representations of states in $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 249(1979), 303-329. MR 525675 (80k:46069)
  • [2] R. J. Archbold, Extensions of states of $ {C^\ast}$-algebras, J. London Math. Soc. (2) 21 (1980), 351-354. MR 575394 (83e:46053)
  • [3] R. J. Archbold, J. W. Bunce and K. Gregson, Proc. Roy. Soc. Edinburgh (to appear).
  • [4] C. J. K. Batty, Simplexes of states of $ {C^\ast}$-algebras, J. Operator Theory 4 (1980), 3-23. MR 587365 (82b:46067)
  • [5] -, Abelian faces of state spaces of $ {C^\ast}$-algebras, Comm. Math. Phys. 75 (1980), 43-50. MR 581568 (81k:46068)
  • [6] -, Nuclear faces of state spaces of $ {C^\ast}$-algebras, preprint.
  • [7] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 545651 (81a:46070)
  • [8] J. Cuntz, Simple $ {C^\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • [9] -, Automorphisms of certain simple $ {C^\ast}$-algebras, Quantum Fields-Algebras Processes, (Ed., L. Streit), Springer-Verlag, New York, 1980, pp. 187-196.
  • [10] J. Dixmier, Les $ {C^\ast}$-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1979. MR 0171173 (30:1404)
  • [11] D. E. Evans, On $ {\mathcal{O}_n}$, Publ. Res. Inst. Math. Sci. 16 (1980), 915-927. MR 602475 (82g:46099)
  • [12] R. W. Henrichs, Maximale Integralzerlegungen invarianter positiv definiter Funktionen auf diskreten Gruppen, Math. Ann. 208 (1974), 15-31. MR 0349898 (50:2391)
  • [13] G. K. Pedersen, $ {C^\ast}$-algebras and their automorphism groups, Academic Press, London and New York, 1979. MR 548006 (81e:46037)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05, 46L55

Retrieve articles in all journals with MSC: 46L05, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0656488-8
Keywords: Pure state, extension, restriction, simplex, face, irreducible representation, invariant state, crossed product
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society