Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


On weighted norm inequalities for the Hilbert transform of functions with moments zero

Author: Ernst Adams
Journal: Trans. Amer. Math. Soc. 272 (1982), 487-500
MSC: Primary 44A15; Secondary 42A50
MathSciNet review: 662048
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tilde f$ denote the Hilbert transform of $ f$, i.e.

$\displaystyle \tilde f(x) = {\rm {p}}{\rm {.v}}{\rm {.}}\int {\frac{{f(t)}}{{x - t}}dt} $

and let $ 1 < p < \infty $. A weight function $ w$ is shown to satisfy

$\displaystyle \int {\vert\tilde f(x)} {\vert^p}w(x)dx \le C{\int {\vert f(x)\vert} ^p}w(x)dx$

for all $ f$ with the first $ N$ moments zero, if and only if it is of the form $ w(x) = \vert q(x){\vert^p}U(x)$, where $ q$ is a polynomial of degree at most $ N$ and $ U \in {A_p}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A15, 42A50

Retrieve articles in all journals with MSC: 44A15, 42A50

Additional Information

PII: S 0002-9947(1982)0662048-5
Keywords: Hilbert transform, weighted norm inequalities, $ {A_p}$ weights, functions with vanishing moments
Article copyright: © Copyright 1982 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia