Cellular maps between polyhedra

Author:
James P. Henderson

Journal:
Trans. Amer. Math. Soc. **272** (1982), 527-537

MSC:
Primary 57Q55; Secondary 54E60, 57N60, 57Q37

MathSciNet review:
662050

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A compact subset of a polyhedron is cellular in if there is a pseudoisotopy of shrinking precisely to a point. A proper surjection is cellular if each point inverse of is cellular in . We give certain conditions under which cellular maps between polyhedra are approximable by homeomorphisms. An example of a cellular map which is not approximable by homeomorphisms is also given.

**[1]**Ethan Akin,*Manifold phenomena in the theory of polyhedra*, Trans. Amer. Math. Soc.**143**(1969), 413–473. MR**0253329**, 10.1090/S0002-9947-1969-0253329-1**[2]**F. D. Ancel,*Engulfing the tracks of a proper homotopy*, notes.**[3]**Steve Armentrout,*Cellular decompositions of 3-manifolds that yield 3-manifolds*, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 107. MR**0413104****[4]**J. W. Cannon,*Shrinking cell-like decompositions of manifolds. Codimension three*, Ann. of Math. (2)**110**(1979), no. 1, 83–112. MR**541330**, 10.2307/1971245**[5]**R. D. Edwards,*Approximating certain cellular maps by homeomorphisms*, manuscript.**[6]**Robert D. Edwards and Robion C. Kirby,*Deformations of spaces of imbeddings*, Ann. Math. (2)**93**(1971), 63–88. MR**0283802****[7]**Ross Geoghegan (ed.),*Open problems in infinite-dimensional topology*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 287–338 (1980). MR**583711****[8]**Michael Handel,*Approximating stratum preserving CE maps between CS sets by stratum preserving homeomorphisms*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 245–250. Lecture Notes in Math., Vol. 438. MR**0407854****[9]**James P. Henderson,*Cellularity in polyhedra*, Topology Appl.**12**(1981), no. 3, 267–282. MR**623735**, 10.1016/0166-8641(81)90005-5**[10]**James P. Henderson,*Approximating cellular maps between low-dimensional polyhedra*, Pacific J. Math.**101**(1982), no. 2, 321–331. MR**675404****[11]**James P. Henderson,*A discussion of results and problems related to cellularity in polyhedra*, Continua, decompositions, manifolds (Austin, Tex., 1980) Univ. Texas Press, Austin, Tex., 1983, pp. 141–151. MR**711986****[12]**C. Lacher,*Locally flat strings and half-strings*, Proc. Amer. Math. Soc.**18**(1967), 299–304. MR**0212805**, 10.1090/S0002-9939-1967-0212805-1**[13]**D. R. McMillan Jr.,*A criterion for cellularity in a manifold*, Ann. of Math. (2)**79**(1964), 327–337. MR**0161320****[14]**L. C. Siebenmann,*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271–294. MR**0295365****[15]**-,*Deformations of homeomorphisms on stratified sets*, Comment. Math. Helv.**74**(1972), 123-163.**[16]**John Stallings,*The piecewise-linear structure of Euclidean space*, Proc. Cambridge Philos. Soc.**58**(1962), 481–488. MR**0149457**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57Q55,
54E60,
57N60,
57Q37

Retrieve articles in all journals with MSC: 57Q55, 54E60, 57N60, 57Q37

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0662050-3

Keywords:
Cellular map,
polyhedron,
approximation,
stratification

Article copyright:
© Copyright 1982
American Mathematical Society