Simple knots in compact, orientable -manifolds

Author:
Robert Myers

Journal:
Trans. Amer. Math. Soc. **273** (1982), 75-91

MSC:
Primary 57N10; Secondary 57M25, 57M40

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664030-0

MathSciNet review:
664030

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple closed curve in the interior of a compact, orientable -manifold is called a simple knot if the closure of the complement of a regular neighborhood of in is irreducible and boundary-irreducible and contains no non-boundary-parallel, properly embedded, incompressible annuli or tori. In this paper it is shown that every compact, orientable -manifold such that contains no -spheres contains a simple knot (and thus, from work of Thurston, a knot whose complement is hyperbolic). This result is used to prove that such a -manifold is completely determined by its set of knot groups, i.e, the set of groups as ranges over all the simple closed curves in . In addition, it is proven that a closed -manifold is homeomorphic to if and only if every simple closed curve in shrinks to a point inside a connected sum of graph manifolds and -cells.

**[1]**R. H. Bing,*Necessary and sufficient conditions that a**-manifold be*, Ann. of Math.**68**(1958), 17-37. MR**0095471 (20:1973)****[2]**R. H. Fox,*Recent development of knot theory at Princeton*, Proc. Internat. Congress Math., Cambridge, Mass., 1950, Amer. Math. Soc., Providence, R. I., pp. 453-457. MR**0048023 (13:966b)****[3]**W. Haken,*Some results on surfaces in**-manifolds*, Studies in Modern Topology, Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR**0224071 (36:7118)****[4]**J. Hempel,*-manifolds*, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., 1976. MR**0415619 (54:3702)****[5]**W. Jaco,*Three-manifolds with fundamental group a free product*, Bull. Amer. Math. Soc.**75**(1969), 972-977. MR**0243531 (39:4852)****[6]**-,*Lectures on three-manifold topology*, CBMS Regional Conference Series in Math. No. 43, Amer. Math. Soc., Providence, R. I., 1980. MR**565450 (81k:57009)****[7]**W. Jaco and R. Myers,*An algebraic determination of closed, orientable**-manifolds*, Trans. Amer. Math. Soc.**253**(1979), 149-170. MR**536940 (80g:57012)****[8]**W. Jaco and P. Shalen,*Seifert fibered spaces in**-manifolds*, Mem. Amer. Math. Soc. No. 220 (1979). MR**539411 (81c:57010)****[9]**K. Johannson,*Homotopy equivalences of**-manifolds with boundaries*, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin and New York, 1979. MR**551744 (82c:57005)****[10]**D. R. McMillan,*On homologically trivial**-manifolds*, Trans. Amer. Math. Soc.,**98**(1961), 350-367. MR**0120639 (22:11389)****[11]**J. Milnor,*A unique factorization theorem for**-manifolds*, Amer. J. Math.**84**(1962), 1-7. MR**0142125 (25:5518)****[12]**J. M. Montesinos,*Surgery on links and double branched covers of*, Knots, Groups, and -Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 227-260. MR**0380802 (52:1699)****[13]**R. Myers,*Homology cobordisms, link concordances, and hyperbolic**-manifolds*(preprint).**[14]**W. H. Row,*An algebraic characterization of connected sum factors of closed**-manifolds*, Trans. Amer. Math. Soc.**250**(1979), 347-356. MR**530060 (80g:57009)****[15]**H. Schubert,*Knoten und Vollringe*, Acta. Math.**90**(1953), 131-286. MR**0072482 (17:291d)****[16]**H. Seifert,*Schlingknoten*, Math. Z.**52**(1949), 62-80. MR**0031732 (11:196e)****[17]**W. Thurston,*The geometry and topology of**-manifolds*, lecture notes, Princeton.**[18]**F. Waldhausen,*Eine Klasse von**-dimensionalen Mannigfaltigkeiten*. I, II, Invent. Math.**3**(1967), 308-333; ibid**4**(1967), 87-117. MR**0235576 (38:3880)****[19]**-,*On irreducible**-manifolds which are sufficiently large*, Ann. of Math. (2)**87**(1968), 56-88. MR**0224099 (36:7146)****[20]**W. Whitten,*Groups and manifolds characterizing links*, Knots, Groups, and -Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 63-86. MR**0385840 (52:6699)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57N10,
57M25,
57M40

Retrieve articles in all journals with MSC: 57N10, 57M25, 57M40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0664030-0

Keywords:
-manifold,
knot,
simple knot,
simple -manifold,
semisimple -manifold,
hyperbolic -manifold,
knot group,
Poincaré Conjecture

Article copyright:
© Copyright 1982
American Mathematical Society