Simple knots in compact, orientable manifolds
Author:
Robert Myers
Journal:
Trans. Amer. Math. Soc. 273 (1982), 7591
MSC:
Primary 57N10; Secondary 57M25, 57M40
MathSciNet review:
664030
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A simple closed curve in the interior of a compact, orientable manifold is called a simple knot if the closure of the complement of a regular neighborhood of in is irreducible and boundaryirreducible and contains no nonboundaryparallel, properly embedded, incompressible annuli or tori. In this paper it is shown that every compact, orientable manifold such that contains no spheres contains a simple knot (and thus, from work of Thurston, a knot whose complement is hyperbolic). This result is used to prove that such a manifold is completely determined by its set of knot groups, i.e, the set of groups as ranges over all the simple closed curves in . In addition, it is proven that a closed manifold is homeomorphic to if and only if every simple closed curve in shrinks to a point inside a connected sum of graph manifolds and cells.
 [1]
R.
H. Bing, Necessary and sufficient conditions that a 3manifold be
𝑆³, Ann. of Math. (2) 68 (1958),
17–37. MR
0095471 (20 #1973)
 [2]
R.
H. Fox, Recent development of knot theory at Princeton,
Proceedings of the International Congress of Mathematicians, Cambridge,
Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952,
pp. 453–457. MR 0048023
(13,966b)
 [3]
Wolfgang
Haken, Some results on surfaces in 3manifolds, Studies in
Modern Topology, Math. Assoc. Amer. (distributed by PrenticeHall,
Englewood Cliffs, N.J.), 1968, pp. 39–98. MR 0224071
(36 #7118)
 [4]
John
Hempel, 3Manifolds, Princeton University Press, Princeton, N.
J., 1976. Ann. of Math. Studies, No. 86. MR 0415619
(54 #3702)
 [5]
William
Jaco, Threemanifolds with fundamental group
a free product, Bull. Amer. Math. Soc. 75 (1969), 972–977.
MR
0243531 (39 #4852), http://dx.doi.org/10.1090/S000299041969123207
 [6]
William
Jaco, Lectures on threemanifold topology, CBMS Regional
Conference Series in Mathematics, vol. 43, American Mathematical
Society, Providence, R.I., 1980. MR 565450
(81k:57009)
 [7]
William
Jaco and Robert
Myers, An algebraic determination of closed
orientable 3manifolds, Trans. Amer. Math.
Soc. 253 (1979),
149–170. MR
536940 (80g:57012), http://dx.doi.org/10.1090/S00029947197905369406
 [8]
William
H. Jaco and Peter
B. Shalen, Seifert fibered spaces in 3manifolds, Mem. Amer.
Math. Soc. 21 (1979), no. 220, viii+192. MR 539411
(81c:57010)
 [9]
Klaus
Johannson, Homotopy equivalences of 3manifolds with
boundaries, Lecture Notes in Mathematics, vol. 761, Springer,
Berlin, 1979. MR
551744 (82c:57005)
 [10]
D.
R. McMillan Jr., On homologically trivial
3manifolds, Trans. Amer. Math. Soc. 98 (1961), 350–367.
MR
0120639 (22 #11389), http://dx.doi.org/10.1090/S00029947196101206390
 [11]
J.
Milnor, A unique decomposition theorem for 3manifolds, Amer.
J. Math. 84 (1962), 1–7. MR 0142125
(25 #5518)
 [12]
José
M. Montesinos, Surgery on links and double branched covers of
𝑆³, Knots, groups, and 3manifolds (Papers dedicated to
the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J., 1975,
pp. 227–259. Ann. of Math. Studies, No. 84. MR 0380802
(52 #1699)
 [13]
R. Myers, Homology cobordisms, link concordances, and hyperbolic manifolds (preprint).
 [14]
W.
H. Row, An algebraic characterization of
connected sum factors of closed 3manifolds, Trans. Amer. Math. Soc. 250 (1979), 347–356. MR 530060
(80g:57009), http://dx.doi.org/10.1090/S00029947197905300602
 [15]
Horst
Schubert, Knoten und Vollringe, Acta Math. 90
(1953), 131–286 (German). MR 0072482
(17,291d)
 [16]
H.
Seifert, Schlingknoten, Math. Z. 52 (1949),
62–80 (German). MR 0031732
(11,196e)
 [17]
W. Thurston, The geometry and topology of manifolds, lecture notes, Princeton.
 [18]
Friedhelm
Waldhausen, Eine Klasse von 3dimensionalen Mannigfaltigkeiten. I,
II, Invent. Math. 3 (1967), 308–333; ibid. 4
(1967), 87–117 (German). MR 0235576
(38 #3880)
 [19]
Friedhelm
Waldhausen, On irreducible 3manifolds which are sufficiently
large, Ann. of Math. (2) 87 (1968), 56–88. MR 0224099
(36 #7146)
 [20]
Wilbur
Whitten, Groups and manifolds characterizing links, Knots,
groups, and 3manifolds (Papers dedicated to the memory of R. H. Fox),
Princeton Univ. Press, Princeton, N.J., 1975, pp. 63–84. Ann. of
Math. Studies, No. 84. MR 0385840
(52 #6699)
 [1]
 R. H. Bing, Necessary and sufficient conditions that a manifold be , Ann. of Math. 68 (1958), 1737. MR 0095471 (20:1973)
 [2]
 R. H. Fox, Recent development of knot theory at Princeton, Proc. Internat. Congress Math., Cambridge, Mass., 1950, Amer. Math. Soc., Providence, R. I., pp. 453457. MR 0048023 (13:966b)
 [3]
 W. Haken, Some results on surfaces in manifolds, Studies in Modern Topology, PrenticeHall, Englewood Cliffs, N. J., 1968, pp. 3998. MR 0224071 (36:7118)
 [4]
 J. Hempel, manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., 1976. MR 0415619 (54:3702)
 [5]
 W. Jaco, Threemanifolds with fundamental group a free product, Bull. Amer. Math. Soc. 75 (1969), 972977. MR 0243531 (39:4852)
 [6]
 , Lectures on threemanifold topology, CBMS Regional Conference Series in Math. No. 43, Amer. Math. Soc., Providence, R. I., 1980. MR 565450 (81k:57009)
 [7]
 W. Jaco and R. Myers, An algebraic determination of closed, orientable manifolds, Trans. Amer. Math. Soc. 253 (1979), 149170. MR 536940 (80g:57012)
 [8]
 W. Jaco and P. Shalen, Seifert fibered spaces in manifolds, Mem. Amer. Math. Soc. No. 220 (1979). MR 539411 (81c:57010)
 [9]
 K. Johannson, Homotopy equivalences of manifolds with boundaries, Lecture Notes in Math., vol. 761, SpringerVerlag, Berlin and New York, 1979. MR 551744 (82c:57005)
 [10]
 D. R. McMillan, On homologically trivial manifolds, Trans. Amer. Math. Soc., 98 (1961), 350367. MR 0120639 (22:11389)
 [11]
 J. Milnor, A unique factorization theorem for manifolds, Amer. J. Math. 84 (1962), 17. MR 0142125 (25:5518)
 [12]
 J. M. Montesinos, Surgery on links and double branched covers of , Knots, Groups, and Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 227260. MR 0380802 (52:1699)
 [13]
 R. Myers, Homology cobordisms, link concordances, and hyperbolic manifolds (preprint).
 [14]
 W. H. Row, An algebraic characterization of connected sum factors of closed manifolds, Trans. Amer. Math. Soc. 250 (1979), 347356. MR 530060 (80g:57009)
 [15]
 H. Schubert, Knoten und Vollringe, Acta. Math. 90 (1953), 131286. MR 0072482 (17:291d)
 [16]
 H. Seifert, Schlingknoten, Math. Z. 52 (1949), 6280. MR 0031732 (11:196e)
 [17]
 W. Thurston, The geometry and topology of manifolds, lecture notes, Princeton.
 [18]
 F. Waldhausen, Eine Klasse von dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308333; ibid 4 (1967), 87117. MR 0235576 (38:3880)
 [19]
 , On irreducible manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 5688. MR 0224099 (36:7146)
 [20]
 W. Whitten, Groups and manifolds characterizing links, Knots, Groups, and Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 6386. MR 0385840 (52:6699)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
57N10,
57M25,
57M40
Retrieve articles in all journals
with MSC:
57N10,
57M25,
57M40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198206640300
PII:
S 00029947(1982)06640300
Keywords:
manifold,
knot,
simple knot,
simple manifold,
semisimple manifold,
hyperbolic manifold,
knot group,
Poincaré Conjecture
Article copyright:
© Copyright 1982 American Mathematical Society
