Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Simple knots in compact, orientable $ 3$-manifolds


Author: Robert Myers
Journal: Trans. Amer. Math. Soc. 273 (1982), 75-91
MSC: Primary 57N10; Secondary 57M25, 57M40
DOI: https://doi.org/10.1090/S0002-9947-1982-0664030-0
MathSciNet review: 664030
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple closed curve $ J$ in the interior of a compact, orientable $ 3$-manifold $ M$ is called a simple knot if the closure of the complement of a regular neighborhood of $ J$ in $ M$ is irreducible and boundary-irreducible and contains no non-boundary-parallel, properly embedded, incompressible annuli or tori. In this paper it is shown that every compact, orientable $ 3$-manifold $ M$ such that $ \partial M$ contains no $ 2$-spheres contains a simple knot (and thus, from work of Thurston, a knot whose complement is hyperbolic). This result is used to prove that such a $ 3$-manifold is completely determined by its set $ \mathcal{K}(M)$ of knot groups, i.e, the set of groups $ {\pi _1}(M - J)$ as $ J$ ranges over all the simple closed curves in $ M$. In addition, it is proven that a closed $ 3$-manifold $ M$ is homeomorphic to $ {S^3}$ if and only if every simple closed curve in $ M$ shrinks to a point inside a connected sum of graph manifolds and $ 3$-cells.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Necessary and sufficient conditions that a $ 3$-manifold be $ {S^3}$, Ann. of Math. 68 (1958), 17-37. MR 0095471 (20:1973)
  • [2] R. H. Fox, Recent development of knot theory at Princeton, Proc. Internat. Congress Math., Cambridge, Mass., 1950, Amer. Math. Soc., Providence, R. I., pp. 453-457. MR 0048023 (13:966b)
  • [3] W. Haken, Some results on surfaces in $ 3$-manifolds, Studies in Modern Topology, Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR 0224071 (36:7118)
  • [4] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., 1976. MR 0415619 (54:3702)
  • [5] W. Jaco, Three-manifolds with fundamental group a free product, Bull. Amer. Math. Soc. 75 (1969), 972-977. MR 0243531 (39:4852)
  • [6] -, Lectures on three-manifold topology, CBMS Regional Conference Series in Math. No. 43, Amer. Math. Soc., Providence, R. I., 1980. MR 565450 (81k:57009)
  • [7] W. Jaco and R. Myers, An algebraic determination of closed, orientable $ 3$-manifolds, Trans. Amer. Math. Soc. 253 (1979), 149-170. MR 536940 (80g:57012)
  • [8] W. Jaco and P. Shalen, Seifert fibered spaces in $ 3$-manifolds, Mem. Amer. Math. Soc. No. 220 (1979). MR 539411 (81c:57010)
  • [9] K. Johannson, Homotopy equivalences of $ 3$-manifolds with boundaries, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin and New York, 1979. MR 551744 (82c:57005)
  • [10] D. R. McMillan, On homologically trivial $ 3$-manifolds, Trans. Amer. Math. Soc., 98 (1961), 350-367. MR 0120639 (22:11389)
  • [11] J. Milnor, A unique factorization theorem for $ 3$-manifolds, Amer. J. Math. 84 (1962), 1-7. MR 0142125 (25:5518)
  • [12] J. M. Montesinos, Surgery on links and double branched covers of $ {S^3}$, Knots, Groups, and $ 3$-Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 227-260. MR 0380802 (52:1699)
  • [13] R. Myers, Homology cobordisms, link concordances, and hyperbolic $ 3$-manifolds (preprint).
  • [14] W. H. Row, An algebraic characterization of connected sum factors of closed $ 3$-manifolds, Trans. Amer. Math. Soc. 250 (1979), 347-356. MR 530060 (80g:57009)
  • [15] H. Schubert, Knoten und Vollringe, Acta. Math. 90 (1953), 131-286. MR 0072482 (17:291d)
  • [16] H. Seifert, Schlingknoten, Math. Z. 52 (1949), 62-80. MR 0031732 (11:196e)
  • [17] W. Thurston, The geometry and topology of $ 3$-manifolds, lecture notes, Princeton.
  • [18] F. Waldhausen, Eine Klasse von $ 3$-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333; ibid 4 (1967), 87-117. MR 0235576 (38:3880)
  • [19] -, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [20] W. Whitten, Groups and manifolds characterizing links, Knots, Groups, and $ 3$-Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 63-86. MR 0385840 (52:6699)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10, 57M25, 57M40

Retrieve articles in all journals with MSC: 57N10, 57M25, 57M40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0664030-0
Keywords: $ 3$-manifold, knot, simple knot, simple $ 3$-manifold, semisimple $ 3$-manifold, hyperbolic $ 3$-manifold, knot group, Poincaré Conjecture
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society