Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A trace formula for compact manifolds


Author: K. S. Sarkaria
Journal: Trans. Amer. Math. Soc. 274 (1982), 85-88
MSC: Primary 58A12; Secondary 53C65, 58G10
DOI: https://doi.org/10.1090/S0002-9947-1982-0670920-5
MathSciNet review: 670920
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An integral formula for the Euler characteristic is given, in which the data consists of a finite dimensional transitive vector space $ V$ of vector fields and a volume form $ \Omega $ supported in a small neighborhood of the origin of $ V$.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 1967), 374-407. MR 0212836 (35:3701)
  • [2] K. S. Sarkaria, A finiteness theorem for foliated manifolds, J. Math. Soc. Japan 30 (1978), 687-696. MR 513077 (80a:57014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58A12, 53C65, 58G10

Retrieve articles in all journals with MSC: 58A12, 53C65, 58G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670920-5
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society