Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Distal compactifications of semigroups


Author: H. D. Junghenn
Journal: Trans. Amer. Math. Soc. 274 (1982), 379-397
MSC: Primary 43A60; Secondary 22A25, 54H15
DOI: https://doi.org/10.1090/S0002-9947-1982-0670940-0
MathSciNet review: 670940
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Properties of distal functions on semitopological semigroups are studied via the device of right topological semigroup compactification. Algebras of distal functions are used to construct the universal right simple, left simple, and group compactifications of a semigroup, and these compactifications are in turn systematically employed to obtain information about distal functions. Applications are made to semidirect products and flows.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and F. Hahn, Real functions coming from flows on compact spaces and concepts of almost periodicity, Trans. Amer. Math. Soc. 106 (1963), 415-426. MR 0144325 (26:1871)
  • [2] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math., vol. 42, Springer-Verlag, Berlin and New York, 1967. MR 0223483 (36:6531)
  • [3] J. F. Berglund, H. D. Junghenn and P. Milnes, Compact right topological semigroups and generalizations of almost periodicity, Lecture Notes in Math., vol. 663, Springer-Verlag, Berlin and New York, 1978. MR 513591 (80c:22003)
  • [4] K. deLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta. Math. 105 (1961), 63-97. MR 0131784 (24:A1632)
  • [5] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. MR 0267561 (42:2463)
  • [6] -, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-126. MR 0088674 (19:561b)
  • [7] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477-515. MR 0157368 (28:602)
  • [8 K] H. Hofmann and P. S. Mostert, Elements of compact semigroups, Merrill, Columbus, Ohio, 1966. MR 0209387 (35:285)
  • [9] H. D. Junghenn, $ {C^ \ast }$-algebras of functions on direct products of semigroups, Rocky Mountain J. Math. 10 (1980), 589-597. MR 590221 (81m:22004)
  • [10] -, Extensions of continuous functions on dense semigroups, Illinois J. Math. (to appear) MR 698305 (85e:43014)
  • [11] H. D. Junghenn and B. T. Lerner, Semigroup compactifications of semidirect products, Trans. Amer. Math. Soc. 265 (1981), 393-404. MR 610956 (82k:22003)
  • [12] A. W. Knapp, Distal functions on groups, Trans. Amer. Math. Soc. 128 (1967), 1-40. MR 0222873 (36:5923)
  • [13] A. T. Lau, Invariant means on dense subsemigroups of topological groups, Canad. J. Math. 23 (1971), 797-801. MR 0288209 (44:5407)
  • [14] P. Milnes, Compactifications of semitopological semigroups, J. Austral. Math. Soc. 15 (1973), 488-503. MR 0348030 (50:528)
  • [15] -, Minimal and distal functions on semidirect products of groups, preprint.
  • [16] I. Namioka, Right topological groups, distal flows, and a fixed point theorem, Math. Systems Theory 6 (1972), 193-209. MR 0316619 (47:5166)
  • [17] W. Ruppert, Rechtstopologische Halbgruppen, J. Reine Angew. Math. 261 (1973), 123-133. MR 0318386 (47:6933)
  • [18] M. Petrich, Introduction to semigroups, Merrill, Columbus, Ohio, 1973. MR 0393206 (52:14016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A60, 22A25, 54H15

Retrieve articles in all journals with MSC: 43A60, 22A25, 54H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670940-0
Keywords: Semitopological semigroup, distal function, strongly distal function, minimal distal function, right topological compactification, universal mapping property
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society