Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

On the variety of invariant subspaces of a finite-dimensional linear operator


Author: Mark A. Shayman
Journal: Trans. Amer. Math. Soc. 274 (1982), 721-747
MSC: Primary 15A04; Secondary 14M15
MathSciNet review: 675077
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ V$ is a finite-dimensional vector space over $ \mathbf{R}$ or $ \mathbf{C}$ and $ A \in {\operatorname {Hom}}(V)$, the set $ {S_A}(k)$ of $ k$-dimensional $ A$-invariant subspaces is a compact subvariety of the Grassmann manifold $ {G^k}(V)$, but it need not be a Schubert variety. We study the topology of $ {S_A}(k)$. We reduce to the case where $ A$ is nilpotent. In this case we prove that $ {S_A}(k)$ is connected but need not be a manifold. However, the subset of $ {S_A}(k)$ consisting of those subspaces with a fixed cyclic structure is a regular submanifold of $ {G^k}(V)$.


References [Enhancements On Off] (What's this?)

  • [1] William M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, No. 63. MR 0426007 (54 #13956)
  • [2] Thomas Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201–219. MR 0325405 (48 #3752)
  • [3] F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea, New York, 1959.
  • [4] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725 (80b:14001)
  • [5] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773 (53 #633)
  • [6] Steven L. Kleiman, Problem 15: rigorous foundation of Schubert’s enumerative calculus, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc., Providence, R. I., 1976, pp. 445–482. Proc. Sympos. Pure Math., Vol. XXVIII. MR 0429938 (55 #2946)
  • [7] M. A. Shayman, Varieties of invariant subspaces and the algebraic Riccati equation, Ph. D. thesis, Harvard University, 1980.
  • [8] Jan C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Automatic Control AC-16 (1971), 621–634. MR 0308890 (46 #8002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 15A04, 14M15

Retrieve articles in all journals with MSC: 15A04, 14M15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1982-0675077-2
PII: S 0002-9947(1982)0675077-2
Keywords: Invariant subspace, Grassmann manifold, Schubert variety
Article copyright: © Copyright 1982 American Mathematical Society