Local analyticity in weighted spaces and applications to stability problems for Volterra equations
Authors:
G. S. Jordan, Olof J. Staffans and Robert L. Wheeler
Journal:
Trans. Amer. Math. Soc. 274 (1982), 749782
MSC:
Primary 45M05; Secondary 46J99
MathSciNet review:
675078
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the qualitative properties of the solutions of linear convolution equations such as and . We are especially concerned with finding conditions which ensure that these equations have resolvents which belong to, or are determined up to a term belonging to, certain weighted spaces. Our results are obtained as consequences of more general Banach algebra results on functions that are locally analytic with respect to the elements of a weighted space. In particular, we derive a proposition of WienerLévy type for weighted spaces which underlies all subsequent results. Our method applies equally well to equations more general than those mentioned above. We unify and sharpen the results of several recent papers on the asymptotic behavior of Volterra convolution equations of the types mentioned above, and indicate how many of them can be extended to the Fredholm case. In addition, we give necessary and sufficient conditions on the perturbation term for the existence of bounded or integrable solutions in some critical cases when the corresponding limit equations have nontrivial solutions.
 [1]
W. F. Donoghue, Jr., Distributions and Fourier transforms, Academic Press, New York, 1969.
 [2]
I.
Gelfand, Über absolut konvergente trigonometrische Reihen und
Integrale, Rec. Math. [Mat. Sbornik] N. S. 9 (51)
(1941), 51–66 (German, with Russian summary). MR 0004727
(3,51g)
 [3]
I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative normed rings, Chelsea, New York, 1964.
 [4]
Gustaf
Gripenberg, On the asymptotic behavior of resolvents of Volterra
equations, SIAM J. Math. Anal. 11 (1980), no. 4,
654–662. MR
579557 (81h:45003), http://dx.doi.org/10.1137/0511060
 [5]
Gustaf
Gripenberg, Integrability of resolvents of systems of Volterra
equations, SIAM J. Math. Anal. 12 (1981), no. 4,
585–594. MR
617717 (84a:45005), http://dx.doi.org/10.1137/0512051
 [6]
Gustaf
Gripenberg, Decay estimates for resolvents of Volterra
equations, J. Math. Anal. Appl. 85 (1982),
no. 2, 473–487. MR 649187
(83d:45004), http://dx.doi.org/10.1016/0022247X(82)900130
 [7]
Kenneth
B. Hannsgen, A Volterra equation with completely monotonic
convolution kernel, J. Math. Anal. Appl. 31 (1970),
459–471. MR 0265897
(42 #806)
 [8]
Kenneth
B. Hannsgen, A WienerLévy theorem for quotients, with
applications to Volterra equations, Indiana Univ. Math. J.
29 (1980), no. 1, 103–120. MR 554820
(81a:45001), http://dx.doi.org/10.1512/iumj.1980.29.29008
 [9]
Einar
Hille and Ralph
S. Phillips, Functional analysis and semigroups, American
Mathematical Society Colloquium Publications, vol. 31, American
Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
(19,664d)
 [10]
G.
S. Jordan and Robert
L. Wheeler, Asymptotic behavior of unbounded solutions of linear
Volterra integral equations, J. Math. Anal. Appl. 55
(1976), no. 3, 596–915. MR 0425557
(54 #13511)
 [11]
G.
S. Jordan and Robert
L. Wheeler, A generalization of the
WienerLévy theorem applicable to some Volterra equations,
Proc. Amer. Math. Soc. 57 (1976),
no. 1, 109–114. MR 0405023
(53 #8819), http://dx.doi.org/10.1090/S00029939197604050230
 [12]
G.
S. Jordan and Robert
L. Wheeler, Rates of decay of resolvents of Volterra equations with
certain nonintegrable kernels, J. Integral Equations
2 (1980), no. 2, 103–110. MR 572481
(81d:45003)
 [13]
G.
S. Jordan and Robert
L. Wheeler, Weighted 𝐿¹remainder theorems for
resolvents of Volterra equations, SIAM J. Math. Anal.
11 (1980), no. 5, 885–900. MR 586916
(81j:45003), http://dx.doi.org/10.1137/0511079
 [14]
R.
K. Miller, Structure of solutions of unstable linear Volterra
integrodifferential equations, J. Differential Equations
15 (1974), 129–157. MR 0350351
(50 #2844)
 [15]
Raymond
E. A. C. Paley and Norbert
Wiener, Fourier transforms in the complex domain, American
Mathematical Society Colloquium Publications, vol. 19, American
Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original.
MR
1451142 (98a:01023)
 [16]
Daniel
F. Shea and Stephen
Wainger, Variants of the WienerLévy theorem, with
applications to stability problems for some Volterra integral
equations, Amer. J. Math. 97 (1975), 312–343.
MR
0372521 (51 #8728)
 [17]
Olof
J. Staffans, On asymptotically almost periodic
solutions of a convolution equation, Trans.
Amer. Math. Soc. 266 (1981), no. 2, 603–616. MR 617554
(83b:46056), http://dx.doi.org/10.1090/S00029947198106175545
 [18]
J.
S. W. Wong and R.
Wong, Asymptotic solutions of linear
Volterra integral equations with singular kernels, Trans. Amer. Math. Soc. 189 (1973), 185–200. MR 0338718
(49 #3482), http://dx.doi.org/10.1090/S00029947197403387180
 [1]
 W. F. Donoghue, Jr., Distributions and Fourier transforms, Academic Press, New York, 1969.
 [2]
 I. M. Gelfand, Über absolut konvergente trigonometrische Reihen und Integrale, Mat. Sb. 9 (1941), 5166. MR 0004727 (3:51g)
 [3]
 I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative normed rings, Chelsea, New York, 1964.
 [4]
 G. Gripenberg, On the asymptotic behavior of resolvents of Volterra equations, SIAM J. Math. Anal. 11 (1980), 654662. MR 579557 (81h:45003)
 [5]
 , Integrability of resolvents of systems of Volterra equations, SIAM J. Math. Anal. 12 (1981), 585594. MR 617717 (84a:45005)
 [6]
 , Decay estimates for resolvents of Volterra equations, J. Math. Anal. Appl. 85 (1982), 473487. MR 649187 (83d:45004)
 [7]
 K. B. Hannsgen, A Volterra equation with completely monotonic convolution kernel, J. Math. Anal. Appl. 31 (1970), 459471. MR 0265897 (42:806)
 [8]
 , A WienerLévy Theorem for quotients, with applications to Volterra equations, Indiana Univ. Math. J. 29 (1980), 103120. MR 554820 (81a:45001)
 [9]
 E. Hille and R. S. Phillips, Functional analysis and semigroups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
 [10]
 G. S. Jordan and R. L. Wheeler, Asymptotic behavior of unbounded solutions of linear Volterra integral equations, J. Math. Anal. Appl. 55 (1976), 596615. MR 0425557 (54:13511)
 [11]
 , A generalization of the WienerLévy Theorem applicable to some Volterra equations, Proc. Amer. Math. Soc. 57 (1976), 109114. MR 0405023 (53:8819)
 [12]
 , Rates of decay of resolvents of Volterra equations with certain nonintegrable kernels, J. Integral Equations 2 (1980), 103110. MR 572481 (81d:45003)
 [13]
 , Weighted remainder theorems for resolvents of Volterra equations, SIAM J. Math. Anal. 11 (1980), 885900. MR 586916 (81j:45003)
 [14]
 R. K. Miller, Structure of solutions of unstable linear Volterra integrodifferential equations, J. Differential Equations 15 (1974), 129157. MR 0350351 (50:2844)
 [15]
 R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R. I., 1934. MR 1451142 (98a:01023)
 [16]
 D. F. Shea and S. Wainger, Variants of the WienerLévy Theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975), 312343. MR 0372521 (51:8728)
 [17]
 O. J. Staffans, On asymptotically almost periodic solutions of a convolution equation, Trans. Amer. Math. Soc. 266 (1981), 603616. MR 617554 (83b:46056)
 [18]
 J. S. W. Wong and R. Wong, Asymptotic solutions of linear Volterra integral equations with singular kernels, Trans. Amer. Math. Soc. 189 (1974), 185200. MR 0338718 (49:3482)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
45M05,
46J99
Retrieve articles in all journals
with MSC:
45M05,
46J99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198206750784
PII:
S 00029947(1982)06750784
Article copyright:
© Copyright 1982
American Mathematical Society
