Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dynamical systems and extensions of states on $ C\sp{\ast} $-algebras


Author: Nghiem Dang-Ngoc
Journal: Trans. Amer. Math. Soc. 275 (1983), 143-152
MSC: Primary 46L55; Secondary 47A35
DOI: https://doi.org/10.1090/S0002-9947-1983-0678340-5
MathSciNet review: 678340
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (A,G,\tau)$ be a noncommutative dynamical system, i.e. $ A$ is a $ {C^{\ast} }$-algebra, $ G$ a topological group and $ \tau $ an action of $ G$ on $ A$ by $ ^{\ast} $-automorphisms, and let $ ({M_\alpha })$ be an $ M$-net on $ G$. We characterize the set of $ a$ in $ A$ such that $ {M_\alpha }a$ converges in norm. We show that this set is intimately related to the problem of extensions of pure states of R. V. Kadison and I. M. Singer: if $ B$ is a maximal abelian subalgebra of $ A$, we can associate a dynamical system $ (A,G,\tau)$ such that $ {M_\alpha }a$ converges in norm if and only if all extensions to $ A$, of a homomorphism of $ B$, coincide on $ a$. This result allows us to construct different examples of a $ {C^{\ast} }$-algebra $ A$ with maximal abelian subalgebra $ B$ (isomorphic to $ C({\mathbf{R}}/{\mathbf{Z}})$ or $ {L^\infty }[0,1])$ for which the property of unique pure state extension of homomorphisms is or is not verified.


References [Enhancements On Off] (What's this?)

  • [1] J. Anderson, Extensions, restrictions and representations of states on $ {C^{\ast} }$-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329. MR 525675 (80k:46069)
  • [2] J.-P. Conze and N. Dang-Ngoc, Ergodic theorems for noncommutative dynamical systems, Invent. Math. 46 (1978), 1-15. MR 0500185 (58:17870)
  • [3] N. Dang-Ngoc, Sur la classification des systèmes dynamiques non commutatifs, J. Funct. Anal. 15 (1974), 188-201. MR 0348509 (50:1007)
  • [4] M. Denker, On strict ergodicity, Math. Z. 139 (1973), 231-253. MR 0352402 (50:4889)
  • [5] M. Denker and E. Eberlein, Ergodic flows are strictly ergodic, Adv. in Math. 13 (1974), 437-473. MR 0352403 (50:4890)
  • [6] J. Dixmier, Les $ {C^{\ast} }$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969. MR 0246136 (39:7442)
  • [7] W. F. Eberlein, Abstract ergodic theorems and weakly almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 0036455 (12:112a)
  • [8] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, New York, 1969. MR 0251549 (40:4776)
  • [9] G. Hansel and J.-P. Raoult, Ergodicité, uniformité et unique ergodicité.
  • [10] R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400. MR 0123922 (23:A1243)
  • [11] I. Kovács and J. Szűcs, Ergodic type theorem in von Neumann algebras, Acta Sci. Math. (Szeged) 27 (1967), 233-246. MR 0209857 (35:753)
  • [12] W. Krieger, On unique ergodicity, Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., Univ. of California Press, Berkely and Los Angeles, 1970, pp. 327-346. MR 0393402 (52:14212)
  • [13] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), 201-211. MR 0428060 (55:1089)
  • [14] G. A. Reid, On the Calkin representations, Proc. London Math. Soc. 23 (1971), 547-564. MR 0293413 (45:2490)
  • [15] D. Ruelle, Statistical mechanics, Benjamin, New York, 1969. MR 0289084 (44:6279)
  • [16] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972), 306-321. MR 0303307 (46:2445)
  • [17] J. Tomiyama, Some types of maximal abelian subalgebras, J. Funct. Anal. 10 (1972), 373-386. MR 0341126 (49:5876)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L55, 47A35

Retrieve articles in all journals with MSC: 46L55, 47A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0678340-5
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society