Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An algebraic classification of certain simple even-dimensional knots


Author: C. Kearton
Journal: Trans. Amer. Math. Soc. 276 (1983), 1-53
MSC: Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9947-1983-0684492-3
MathSciNet review: 684492
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The simple $ 2q$-knots, $ q \geqslant 4$, for which $ {H_q}(\tilde{K})$ contains no $ {\mathbf{Z}}$-torsion, are classified by means of Hermitian duality pairings on their homology and homotopy modules.


References [Enhancements On Off] (What's this?)

  • [Ba] H. Bass, Algebraic $ K$-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [B] R. C. Blanchfield, Intersection theory of manifolds with operators, with applications to knot theory, Ann. of Math. 65 (1957), 340-356. MR 0085512 (19:53a)
  • [F] R. H. Fox, A quick trip through knot theory, Topology of $ 3$ Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 0140099 (25:3522)
  • [Fa] M. S. Faber, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261 (1980), 185-209. MR 576871 (81k:57016)
  • [H] S. T. Hu, Homotopy theory, Academic Press, New York, 1959. MR 0106454 (21:5186)
  • [K1] C. Kearton, Obstructions to embedding and isotopy in the metastable range, Math. Ann. 243 (1979), 103-113. MR 543720 (82k:57012)
  • [K2] -, Attempting to classify knot modules and their Hermitian pairings, Knot Theory, Plans-surBex 1977 (Ed. J. C. Hausmann), Lecture Notes in Math., vol. 685, Springer-Verlag, Berlin and New York, 1978, pp. 227-242. MR 521736 (81b:57020)
  • [K3] -, Presentations of $ n$-knots, Trans. Amer. Math. Soc. 202 (1975), 123-140. MR 0358795 (50:11254)
  • [K4] -, Signatures of knots and the free differential calculus, Quart. J. Math. Oxford Ser. (2) 30 (1979), 157-182. MR 534830 (80h:57002)
  • [K5] -, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), 141-160. MR 0358796 (50:11255)
  • [K6] -, An algebraic classification of some even-dimensional knots, Topology 15 (1976), 363-373. MR 0442948 (56:1323)
  • [K-L] C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415-424. MR 0310899 (46:9997)
  • [Ke] M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 0189052 (32:6479)
  • [Ko] S. Kojima, A classification of some even dimensional fibred knots, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 671-683. MR 0645407 (58:31099)
  • [Ko2] -, Classification of simple knots by Levine pairings, Comment. Math. Helv. 54 (1979), 356-367. MR 543336 (83a:57023a)
  • [L] J. Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50. MR 0461518 (57:1503)
  • [L2] -, Polynomial invariants of knots of codimension two, Ann. of Math. 84 (1966), 537-554. MR 0200922 (34:808)
  • [L3] -, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198. MR 0266226 (42:1133)
  • [Ma] S. Mac Lane, Homology, Springer-Verlag, Berlin and New York, 1975. MR 1344215 (96d:18001)
  • [M] J. Milnor, Introduction to algebraic $ K$-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
  • [N] D. G. Northcott, Homological algebra, Cambridge Univ. Press, New York, 1960. MR 0118752 (22:9523)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0684492-3
Keywords: High dimensional knot, homotopy pairing
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society