Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The approximation property for some $ 5$-dimensional Henselian rings


Authors: Joseph Becker, J. Denef and L. Lipshitz
Journal: Trans. Amer. Math. Soc. 276 (1983), 301-309
MSC: Primary 13J15; Secondary 13D10, 14B12, 14D15
MathSciNet review: 684510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field of characteristic 0, $ k[[{X_1},{X_2}]]$ the ring of formal power series and $ R = k[[{X_1},{X_2}]]{[{X_3},{X_4},{X_5}]^ \sim}$ the algebraic closure of $ k[[{X_1},{X_2}]][{X_3},{X_4},{X_5}]$ in $ k[[{X_1},\ldots,{X_5}]]$. It is shown that $ R$ has the Approximation Property.


References [Enhancements On Off] (What's this?)

  • [A] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 0232018
  • [A1] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 0268188
  • [A2] M. Artin, Construction techniques for algebraic spaces, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 419–423. MR 0427316
  • [A3] -, Lectures on deformations of singularities, Tata Institute Notes 54, Bombay, 1976.
  • [B] Joseph Becker, A counterexample to Artin approximation with respect to subrings, Math. Ann. 230 (1977), no. 2, 195–196. MR 0480508
  • [BDLV] Joseph Becker, J. Denef, L. Lipshitz, and L. van den Dries, Ultraproducts and approximations in local rings. I, Invent. Math. 51 (1979), no. 2, 189–203. MR 528023, 10.1007/BF01390228
  • [CK] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
  • [DL] J. Denef and L. Lipshitz, Ultraproducts and approximation in local rings. II, Math. Ann. 253 (1980), no. 1, 1–28. MR 594530, 10.1007/BF01457817
  • [E] Renée Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (1974) (French). MR 0345966
  • [EGA] A. Grothendieck, Eléments de géométrie algébrique. IV, Inst. Hautes Études Sci. Publ. Math. 24 (1965); 32 (1967).
  • [G] Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59–64. MR 0207700
  • [Ga] A. M. Gabrièlov, The formal relations between analytic functions, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 64–65 (Russian). MR 0302930
  • [N] André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ.Math. No. 21 (1964), 128 (French). MR 0179172
  • [P] Dorin Popescu, A remark on two-dimensional local rings with the property of approximation, Math. Z. 173 (1980), no. 3, 235–240. MR 592372, 10.1007/BF01159662
  • [PP] Gerhard Pfister and Dorin Popescu, On three-dimensional local rings with the property of approximation, Rev. Roumaine Math. Pures Appl. 26 (1981), no. 2, 301–307. MR 616044
  • [ZS] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13J15, 13D10, 14B12, 14D15

Retrieve articles in all journals with MSC: 13J15, 13D10, 14B12, 14D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0684510-2
Article copyright: © Copyright 1983 American Mathematical Society