Biholomorphic invariants of a hyperbolic manifold and some applications

Author:
B. L. Fridman

Journal:
Trans. Amer. Math. Soc. **276** (1983), 685-698

MSC:
Primary 32H20; Secondary 32F15

MathSciNet review:
688970

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A biholomorphically invariant real function is defined for a hyperbolic manifold . Properties of such functions are studied. These properties are applied to prove the following theorem. If a hyperbolic manifold can be exhausted by biholomorphic images of a strictly pseudoconvex domain with , then is biholomorphically equivalent either to or to the unit ball in . The properties of are also applied to some questions concerning the group of analytical automorphisms of a strictly pseudoconvex domain and to similar questions concerning polyhedra.

**[1]**H. Alexander,*Extremal holomorphic imbeddings between the ball and polydisc*, Proc. Amer. Math. Soc.**68**(1978), no. 2, 200–202. MR**0473239**, 10.1090/S0002-9939-1978-0473239-5**[2]**John Erik Fornaess and Edgar Lee Stout,*Polydiscs in complex manifolds*, Math. Ann.**227**(1977), no. 2, 145–153. MR**0435441****[3]**John Erik Fornæss and Nessim Sibony,*Increasing sequences of complex manifolds*, Math. Ann.**255**(1981), no. 3, 351–360. MR**615855**, 10.1007/BF01450708**[4]**B. L. Fridman,*Imbedding of a strictly pseudoconvex domain in a polyhedron*, Dokl. Akad. Nauk SSSR**249**(1979), no. 1, 63–67 (Russian). MR**553986****[5]**B. L. Fridman,*A class of analytic polyhedra*, Dokl. Akad. Nauk SSSR**242**(1978), no. 5, 1020–1022 (Russian). MR**510253****[6]**Ian Graham,*Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in 𝐶ⁿ with smooth boundary*, Trans. Amer. Math. Soc.**207**(1975), 219–240. MR**0372252**, 10.1090/S0002-9947-1975-0372252-8**[7]**Robert E. Greene and Steven G. Krantz,*The automorphism groups of strongly pseudoconvex domains*, Math. Ann.**261**(1982), no. 4, 425–446. MR**682655**, 10.1007/BF01457445**[8]**Paul F. Klembeck,*Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets*, Indiana Univ. Math. J.**27**(1978), no. 2, 275–282. MR**0463506****[9]**Shoshichi Kobayashi,*Hyperbolic manifolds and holomorphic mappings*, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR**0277770****[10]**H. L. Royden,*Remarks on the Kobayashi metric*, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Springer, Berlin, 1971, pp. 125–137. Lecture Notes in Math., Vol. 185. MR**0304694****[11]**B. Wong,*Characterization of the unit ball in 𝐶ⁿ by its automorphism group*, Invent. Math.**41**(1977), no. 3, 253–257. MR**0492401**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32H20,
32F15

Retrieve articles in all journals with MSC: 32H20, 32F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0688970-2

Article copyright:
© Copyright 1983
American Mathematical Society