Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conjugate Fourier series on certain solenoids


Authors: Edwin Hewitt and Gunter Ritter
Journal: Trans. Amer. Math. Soc. 276 (1983), 817-840
MSC: Primary 43A70; Secondary 42A50
DOI: https://doi.org/10.1090/S0002-9947-1983-0688979-9
MathSciNet review: 688979
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider an arbitrary noncyclic subgroup of the additive group $ {\mathbf{Q}}$ of rational numbers, denoted by $ {{\mathbf{Q}}_{\mathbf{a}}}$, and its compact character group $ {\Sigma _{\mathbf{a}}}$. For $ 1 < p < \infty $, an abstract form of Marcel Riesz's theorem on conjugate series is known. For $ f$ in $ {\mathfrak{L}_p}({\Sigma _{\mathbf{a}}})$, there is a function $ \tilde{f}$ in $ {\mathfrak{L}_p}({\Sigma _{\mathbf{a}}})$ whose Fourier transform $ (\tilde{f})\hat{\empty}(\alpha )$ at $ \alpha $ in $ {{\mathbf{Q}}_{\mathbf{a}}}$ is $ - i\,\operatorname{sgn}\,\alpha \hat{f}(\alpha )$. We show in this paper how to construct $ \tilde{f}$ explicitly as a pointwise limit almost everywhere on $ {\Sigma_{\mathbf{a}}}$ of certain harmonic functions, as was done by Riesz for the circle group. Some extensions of this result are also presented.


References [Enhancements On Off] (What's this?)

  • [1] Richard Arens and I. M. Singer, Generalized analytic functions, Trans. Amer. Math. Soc. 81 (1956), 379-393. MR 0078657 (17:1226e)
  • [2] Errett Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. 70 (1964), 121-122. MR 0158284 (28:1510)
  • [3] Joseph L. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
  • [4] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [5] L. L. Helms, Introduction to potential theory, Interscience, New York, 1969. MR 0261018 (41:5638)
  • [6] Henry Helson, Conjugate series in several variables, Pacific J. Math. 9 (1959), 513-523. MR 0107777 (21:6499)
  • [7] Edwin Hewitt and Gunter Ritter, Fourier series on certain solenoids, Math. Ann. 257 (1981), 61-83. MR 630647 (83h:43008)
  • [8] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. I, 2nd ed., Springer-Verlag, Berlin and New York, 1979. MR 551496 (81k:43001)
  • [9] Edwin Hewitt and Herbert S. Zuckerman, The $ {l_1}$-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70-97. MR 0081908 (18:465b)
  • [10] I. I. Privalov, Sur les fonctions conjuguées, Bull. Soc. Math. France 44 (1916), 100-103. MR 1504751
  • [11] -, The Cauchy integral, Saratov, U. S. S. R., Publ. Univ., Phys.-Math. Faculty 11:1, 1918.
  • [12] Marcel Riesz, Sur les fonctions conjuguées, Math. Z. 27 (1928), 218-244. MR 1544909
  • [13] Walter Rudin, Fourier analysis on groups, Interscience, New York, 1962. MR 0152834 (27:2808)
  • [14] Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, New York, 1971. MR 0423083 (54:11066)
  • [15] E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z. 25 (1926), 321-347. MR 1544814
  • [16] -, Introduction to the theory of Fourier integrals, Oxford Univ. Press, Oxford, 1937 (reprinted with corrections, 1967).
  • [17] Shigeki Yano, Notes on Fourier analysis (XXIX): an extrapolation theorem, J. Math. Soc. Japan 3 (1951), 296-305. MR 0048619 (14:41c)
  • [18] Antoni Zygmund, Sur les fonctions conjuguées, Fund. Math. 13 (1929), 284-303; Corrigenda, ibid. 18 (1932), 312.
  • [19] -, Trigonometric series, Vol. I, 2nd ed., Cambridge Univ. Press, Cambridge, 1959 (reprinted with corrections and additions, 1968 and 1977).
  • [20] -, Trigonometric series, Vol. II, 2nd ed., Same bibliography as item [19].

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A70, 42A50

Retrieve articles in all journals with MSC: 43A70, 42A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0688979-9
Keywords: Conjugate functions, conjugate Fourier series, compact solenoidal groups
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society