Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Applications of $ q$-Lagrange inversion to basic hypergeometric series


Authors: Ira Gessel and Dennis Stanton
Journal: Trans. Amer. Math. Soc. 277 (1983), 173-201
MSC: Primary 33A35; Secondary 05A19, 10A45
DOI: https://doi.org/10.1090/S0002-9947-1983-0690047-7
MathSciNet review: 690047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A family of $ q$-Lagrange inversion formulas is given. Special cases include quadratic and cubic transformations for basic hypergeometric series. The $ q$-analogs of the so-called "strange evaluations" are also corollaries. Some new RogersRamanujan identities are given. A connection between the work of Rogers and Andrews, and $ q$-Lagrange inversion is stated.


References [Enhancements On Off] (What's this?)

  • [1] N. Abel, Sur les fonctions génératrices et leurs déterminantes, Ouvres Complètes, vol. 2, Grøndahl & Søn, Christiania, 1881, pp. 67-81.
  • [2] -, Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist, J. Reine Angew. Math. 1 (1826), 159-160.
  • [3] W. Al-Salam and A. Verma, On quadratic transformations for basic series, preprint. MR 731877 (85j:33003)
  • [4] G. Andrews, Identities in combinatorics. II: A $ q$-analog of the Lagrange inversion theorem, Proc. Amer. Math. Soc. 53 (1975), 240-245. MR 0389610 (52:10441)
  • [5] -, On $ q$-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), 332-336. MR 0399529 (53:3373)
  • [6] -, Connection coefficient problems and partitions (D. Ray-Chaudhuri, ed.), Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, R. I., 1979, pp. 1-24. MR 525316 (80c:33004)
  • [7] -, On the $ q$-analog of Kummer's theorem and applications, Duke Math. J. 40 (1973), 525-528. MR 0320375 (47:8914)
  • [8] G. Andrews and R. Askey, Enumeration of partitions: The role of Eulerian series and $ q$-orthogonal polynomials, Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht, 1977, pp. 3-26. MR 519776 (80b:10021)
  • [9] R. Askey and M. Ismail, A generalization of ultraspherical polynomials, Studies in Analysis (to appear). MR 692677 (84i:33009)
  • [10] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, preprint. MR 783216 (87a:05023)
  • [11] W. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935.
  • [12] -, Products of generalized hypergeometric series, Proc. London Math. Soc. 28 (1928), 242-254.
  • [13] -, Some identities involving generalized hypergeometric series, Proc. London Math. Soc. 29 (1929), 503-516.
  • [14] D. Bressoud, Some identities for terminating $ q$-series, Math. Proc. Cambridge Philos. Soc. 89 (1981), 211-223. MR 600238 (82d:05019)
  • [15] L. Carlitz, Some $ q$-expansion formulas, Glas. Mat. Ser. III 8 (1973), 205-214. MR 0330842 (48:9179)
  • [16] -, Some formulas of F. H. Jackson, Monatsh. Math. 73 (1969), 193-198. MR 0248035 (40:1290)
  • [17] J. Cigler, Operatormethoden fü $ q$-Identitäten, Monatsh. Math. 88 (1980), 87-105. MR 551934 (81h:05009)
  • [18] -, Operatormethoden fü $ q$-Identitäten. II. $ q$-Laquerre-Polynome, Monatsh. Math. 91 (1981), 105-117. MR 618801 (83g:05007)
  • [19] -, Operatormethoden fü $ q$-Identitäten. III: Umbrale Inversion und die Lagrangesche Formel, Arch. Math. (Basel) 35 (1980), 533-543. MR 604252 (83g:05008)
  • [20] A. Erdelyi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [21] J. Fields and M. Ismail, Polynomial expansions, Math. Comp. 29 (1975), 894-902. MR 0372472 (51:8680)
  • [22] A. Garsia, A $ q$-analogue of the Lagrange inversion formula, Houston J. Math. 7 (1981), 205-237. MR 638947 (82m:05010)
  • [23] I. Gessel, A noncommutative generalization and $ q$-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980), 455-482. MR 552269 (82g:05006)
  • [24] I. Gessel and D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), 295-308. MR 647127 (83c:33002)
  • [25] P. Henrici, Applied and computational complex analysis, Vol. 1, Interscience, New York, 1977.
  • [26] F. Jackson, A $ q$-generalization of Abel's series, Rend. Palermo 29 (1910), 340-346.
  • [27] V. Jain, Some transformations of basic hypergeometric functions. Part II, SIAM J. Math. Anal. 12 (1981), 957-961. MR 657138 (83d:33004b)
  • [28] V. Jain and A. Verma, Transformations between basic hypergeometric series on different bases and identities of Rogers-Ramanujan type, J. Math. Anal. Appl. 76 (1980), 230-269. MR 586661 (81j:05024)
  • [29] D. Sears, Transformations of basic hypergeometric functions of special type, Proc. London Math. Soc. 52 (1951), 467-483. MR 0041982 (13:33e)
  • [30] L. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 0201688 (34:1570)
  • [31] -, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952), 147-167. MR 0049225 (14:138e)
  • [32] A. Verma, A quadratic transformation of a basic hypergeometric series, SIAM J. Math. Anal. 11 (1980), 425-427. MR 572192 (81f:33005)
  • [33] E. Whittaker and G. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33A35, 05A19, 10A45

Retrieve articles in all journals with MSC: 33A35, 05A19, 10A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690047-7
Keywords: Lagrange inversion, basic hypergeometric series, Rogers-Ramanujan identities
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society