Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Conservation laws of free boundary problems and the classification of conservation laws for water waves


Author: Peter J. Olver
Journal: Trans. Amer. Math. Soc. 277 (1983), 353-380
MSC: Primary 35R35; Secondary 35L65, 35Q20, 76B15
MathSciNet review: 690057
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The two-dimensional free boundary problem for incompressible irrotational water waves without surface tension is proved to have exactly eight nontrivial conservation laws. Included is a discussion of what constitutes a conservation law for a general free boundary problem, and a characterization of conservation laws for two-dimensional free boundary problems involving a harmonic potential proved using elementary methods from complex analysis.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal. 76 (1981), no. 1, 9–95. MR 629699, 10.1007/BF00250799
  • [2] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), no. 1220, 47–78. MR 0427868
  • [3] T. Brooke Benjamin and J. J. Mahony, On an invariant property of water waves, J. Fluid Mech. 49 (1971), 385–389. MR 0314350
  • [4] T. Brooke Benjamin and P. J. Olver, Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech. 125 (1982), 137–185. MR 688749, 10.1017/S0022112082003292
  • [5] D. J. Benney, Some properties of long nonlinear waves, Stud. Appl. Math. 52 (1973), 45-50.
  • [6] J. L. Bona, W. G. Pritchard and L. R. Scott, Solitary wave interaction, Phys. Fluids 23 (1980), 438-441.
  • [7] Louis Comtet, Une formule explicite pour les puissances successives de l’opérateur de dérivation de Lie, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A165–A168 (French). MR 0317954
  • [8] K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Comm. Pure Appl. Math. 7 (1954), 517–550. MR 0065317
  • [9] Clifford S. Gardner, Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys. 12 (1971), 1548–1551. MR 0286402
  • [10] D. J. Korteweg and G. deVries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. 39 (1895), 422-443.
  • [11] George L. Lamb Jr., Elements of soliton theory, John Wiley & Sons, Inc., New York, 1980. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 591458
  • [12] Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
  • [13] M. S. Longuet-Higgins, A theory of the origin of microseisms, Philos. Trans. Roy. Soc. London. Ser. A. 243 (1950), 1–35. MR 0040887
  • [14] M. S. Longuet-Higgins, Spin and angular momentum in gravity waves, J. Fluid Mech. 97 (1980), no. 1, 1–25. MR 566647, 10.1017/S0022112080002406
  • [15] Yu. I. Manin, Algebraic aspects of nonlinear differential equations, J. Soviet Math. 11 (1979), 1-122.
  • [16] H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 0427731
  • [17] V. I. Nalimov, A priori estimates of solutions of elliptic equations in the class of analytic functions, and their applications to the Cauchy-Poisson problem, Dokl. Akad. Nauk SSSR 189 (1969), 45–48 (Russian). MR 0262645
  • [18] Peter J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 143–160. MR 510408, 10.1017/S0305004100055572
  • [19] Peter J. Olver, Applications of Lie groups to differential equations, Lecture Notes, Oxford University, Mathematical Institute, Oxford, 1980. MR 673378
  • [20] Peter J. Olver, A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl. 89 (1982), no. 1, 233–250. MR 672198, 10.1016/0022-247X(82)90100-7
  • [21] John Reeder and Marvin Shinbrot, The initial value problem for surface waves under gravity. II. The simplest 3-dimensional case, Indiana Univ. Math. J. 25 (1976), no. 11, 1049–1071. MR 0431918
  • [22] John Reeder and Marvin Shinbrot, The initial value problem for surface waves under gravity. III. Uniformly analytic initial domains, J. Math. Anal. Appl. 67 (1979), no. 2, 340–391. MR 528692, 10.1016/0022-247X(79)90028-3
  • [23] John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
  • [24] Marvin Shinbrot, The initial value problem for surface waves under gravity. I. The simplest case, Indiana Univ. Math. J. 25 (1976), no. 3, 281–300. MR 0403400
  • [25] J. J. Stoker, Water waves, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1992. The mathematical theory with applications; Reprint of the 1957 original; A Wiley-Interscience Publication. MR 1153414
  • [26] Walter A. Strauss, Nonlinear invariant wave equations, Invariant wave equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977) Lecture Notes in Phys., vol. 73, Springer, Berlin-New York, 1978, pp. 197–249. MR 498955
  • [27] G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954
  • [28] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. With an introduction to the problem of three bodies; Reprint of the 1937 edition; With a foreword by William McCrea. MR 992404
  • [29] Hideaki Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49–96. MR 660822, 10.2977/prims/1195184016
  • [30] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Math. Tech. Phys. 9 (1968), 86-94.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R35, 35L65, 35Q20, 76B15

Retrieve articles in all journals with MSC: 35R35, 35L65, 35Q20, 76B15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0690057-X
Keywords: Free boundary problem, conservation law, water waves, completely integrable, harmonic function
Article copyright: © Copyright 1983 American Mathematical Society