Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stable orbits of differentiable group actions


Author: Dennis Stowe
Journal: Trans. Amer. Math. Soc. 277 (1983), 665-684
MSC: Primary 57S20; Secondary 57R30, 58F18
DOI: https://doi.org/10.1090/S0002-9947-1983-0694382-8
MathSciNet review: 694382
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a compact orbit of a smooth Lie group action is stable provided the first cohomology space vanishes for the normal representation at some (equivalently, every) point of the orbit. When the orbit is a single point, the acting group need only be compactly generated and locally compact for this conclusion to hold. Applied to foliations, this provides a sufficient condition for the stability of a compact leaf and includes the stability theorems of Reeb and Thurston and of Hirsch as cases.


References [Enhancements On Off] (What's this?)

  • [1] D. Coppersmith, Deformations of Lie subgroups, Trans. Amer. Math. Soc. 233 (1977), 355-366. MR 0457621 (56:15826)
  • [2] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 367-396. MR 0189060 (32:6487)
  • [3] M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems (M. Peixoto, editor), Academic Press, New York, 1973. MR 0334236 (48:12555)
  • [4] -, Differential topology, Springer-Verlag, Berlin and New York, 1976. MR 0448362 (56:6669)
  • [5] -, Flat manifolds and the cohomology of groups, Algebraic and Geometric Topology, Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York, 1977.
  • [6] -, Stability of stationary points and the cohomology of groups, Proc. Amer. Math. Soc. 79 (1980), 191-196. MR 565336 (81c:57046)
  • [7] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401. MR 0147577 (26:5092)
  • [8] R. Langevin and H. Rosenberg, On stability of compact leaves and fibrations, Topology 16 (1977), 107-111. MR 0461523 (57:1508)
  • [9] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183 = Publ. Inst. Math. Univ. Strasbourg No. 11, Hermann, Paris, 1952, pp. 91-154. MR 0055692 (14:1113a)
  • [10] D. Stowe, The stationary set of a group action, Proc. Amer. Math. Soc. 79 (1980), 139-146. MR 560600 (81b:57035)
  • [11] W. Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974), 347-352. MR 0356087 (50:8558)
  • [12] A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157. MR 0169956 (30:199)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S20, 57R30, 58F18

Retrieve articles in all journals with MSC: 57S20, 57R30, 58F18


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0694382-8
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society