Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Small into-isomorphisms between spaces of continuous functions. II


Author: Yoav Benyamini
Journal: Trans. Amer. Math. Soc. 277 (1983), 825-833
MSC: Primary 46E15; Secondary 46B25
DOI: https://doi.org/10.1090/S0002-9947-1983-0694391-9
MathSciNet review: 694391
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct two compact Hausdorff spaces, $ X$ and $ Y$, so that $ C(X)$ does not embed isometrically into $ C(Y)$, but for each $ \varepsilon > 0$, there is an isomorphism $ {T_\varepsilon }$ from $ C(X)$ into $ C(Y)$ satisfying $ \parallel f\parallel \leqslant \parallel {T_\varepsilon }f\;\parallel \leqslant (1 + \varepsilon)\parallel f\parallel $ for all $ f \in C(X)$.


References [Enhancements On Off] (What's this?)

  • [1] Y. Benyamini, Constants of simultaneous extension of continuous functions, Israel J. Math. 16 (1973), 258-262. MR 0341049 (49:5799)
  • [2] -, Small into-isomorphisms between spaces of continuous functions, Proc. Amer. Math. Soc. 83 (1981), 479-485. MR 627674 (82j:46033)
  • [3] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. MR 0625889 (58:30065)
  • [4] E. Bishop and K. de-Leeuw, The representation of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier (Grenoble) 9 (1959), 305-331. MR 0114118 (22:4945)
  • [5] R. Bonnet, Very strongly rigid Boolean algebras continuum discrete set condition countable antichain condition. I, Algebra Universalis 11 (1980), 341-364. MR 602021 (82c:06025)
  • [6] P. R. Halmos, Lectures on Boolean algebras, Van Nostrand, Princeton, N. J., 1963. MR 0167440 (29:4713)
  • [7] I. Juhász, Cardinal functions in topology, Math. Centre Tracts, No. 34, Math. Centrum, Amsterdam, 1971. MR 0340021 (49:4778)
  • [8] A. Pełczynski, On $ C(S)$ subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522. MR 0234261 (38:2578)
  • [9] W. Sierpinski, Sur les type d'ordre des ensembles linéaire, Fund. Math. 37 (1950), 253-264. MR 0041909 (13:19c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E15, 46B25

Retrieve articles in all journals with MSC: 46E15, 46B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0694391-9
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society