A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness

Author:
Matatyahu Rubin

Journal:
Trans. Amer. Math. Soc. **278** (1983), 65-89

MSC:
Primary 06E05; Secondary 03E35, 03G05

DOI:
https://doi.org/10.1090/S0002-9947-1983-0697061-6

MathSciNet review:
697061

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using we construct a Boolean algebra of power , with the following properties: (a) has just subalgebras. (b) Every uncountable subset of contains a countable independent set, a chain of order type , and three distinct elements and , such that . (a) refutes a conjecture of J. D. Monk, (b) answers a question of R. McKenzie. is embeddable in . A variant of the construction yields an almost Jónson Boolean algebra. We prove that every subalgebra of an interval algebra is retractive. This answers affirmatively a conjecture of B. Rotman. Assuming MA or the existence of a Suslin tree we find a retractive BA not embeddable in an interval algebra. This refutes a conjecture of B. Rotman. We prove that an uncountable subalgebra of an interval algebra contains an uncountable chain or an uncountable antichain. Assuming CH we prove that the theory of Boolean algebras in Magidor's and Malitz's language is undecidable. This answers a question of M. Weese.

**[**R. Bonnet,**B1**]*On very strongly rigid Boolean algebras and continuum discrete set condition on Boolean algebras*. I, II, Algebra Universalis (submitted).**[**-,**B2**]*On very strongly rigid Boolean algebras and continuum discrete set condition on Boolean algebras*. III, J. Symbolic Logic (submitted).**[**J. Baumgartner, Private communications.**Ba1**]**[**-,**Ba2**]*Chains and antichains in Boolean algebras*, preprint.*Antichains in Boolean algebras*, preprint.**[**J. Baumgartner and R. Komjáth,**BaK**]*Boolean algebras in which every chain and antichain is countable*(submitted).**[**E. Berny and P. Nyikos,**BeN**]*Length width and breadth of Boolean algebras*, Notices Amer. Math. Soc.**24**(1977); Abstract 742-06-11.**[**E. van Douwen, Ph. D. dissertation, Free University, Amsterdam, 1975.**D1**]**[**-,**D2**]*Simultaneous linear extension of continuous functions*, General Topology Appl.**5**(1975), 297-319. MR**0380715 (52:1612)****[**E. van Douwen, J. D. Monk and M. Rubin,**DMR**]*Some questions about Boolean algebras*, Algebra Universalis**11**(1980), 220-243. MR**588216 (82a:06024)****[**F. Galvin, Private communications.**G**]**[**R. McKenzie, Private communications.**Mc**]**[**M. Magidor and J. Malitz,**MM**]*Compact extensions of*.*Part*, Ann. Math. Logic**11**(1977), 217-261. MR**0453484 (56:11746)****[**B. Rotman,**R**]*Boolean algebras with ordered bases*, Fund. Math.**75**(1972), 187-197. MR**0302527 (46:1671)****[**M. Rubin,**Ru**]*Some results in Boolean algebras*, Notices Amer. Math. Soc.**24**(1977).**[**S. Shelah,**S1**]*Boolean algebras with few endomorphisms*, Proc. Amer. Math. Soc.**74**(1979), 135-142. MR**521887 (82i:06017)****[**-,**S2**]*An uncountable construction*, Israel J. Math. (to appear).**[**M. Weese,**W**]*Decidability of the theory of Boolean algebras with cardinality quantifiers*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**25**(1977), 93-97. MR**0434774 (55:7738)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06E05,
03E35,
03G05

Retrieve articles in all journals with MSC: 06E05, 03E35, 03G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0697061-6

Article copyright:
© Copyright 1983
American Mathematical Society