Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spaces of complex null geodesics in complex-Riemannian geometry


Author: Claude LeBrun
Journal: Trans. Amer. Math. Soc. 278 (1983), 209-231
MSC: Primary 32G10; Secondary 32D15, 32L25, 53C22, 83C99
DOI: https://doi.org/10.1090/S0002-9947-1983-0697071-9
MathSciNet review: 697071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of a complex - Riemannian $ n$-manifold, meaning a complex $ n$-manifold with a nondegenerate complex quadratic form on each tangent space which varies holomorphically from point to point, is briefly developed. It is shown that, provided $ n \geqslant 4$, every such manifold locally arises canonically as the moduli space of all quadrics of a fixed normal-bundle type in an associated space of complex null geodesies. This relationship between local geometry and global complex analysis is stable under deformations.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, Berlin, 1978. (Russian: "Nauka", Moscow, 1974) MR 0690288 (57:14033b)
  • [2] M. Atiyah, N. Hitchin and I. M. Singer. Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [3] N. P. Buchdahl, On the relative de Rham sequence, Proc. Amer. Math. Soc. 87 (1983), 363-366. MR 681850 (85f:58003)
  • [4] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958. MR 0102797 (21:1583)
  • [5] V. Guillemin and S. Sternberg, Geometric asymptotics, Math Surveys, No. 14, Amer. Math. Soc., Providence, R. I., 1977. MR 0516965 (58:24404)
  • [6] N. Hicks, Notes on differential geometry, Van Nostrand-Reinhold, Princeton, N. J., 1971. MR 0179691 (31:3936)
  • [7] J. Isenberg, P. Yasskin and P. S. Green, Non-self-dual gauge fields, Phys. Lett. B 78 (1978), 462-464.
  • [8] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. (2) 75 (1962), 146-162. MR 0133841 (24:A3665b)
  • [9] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2)67 (1958), 328-466. MR 0112154 (22:3009)
  • [10] C. R. LeBrun, Spaces of complex geodesics and related structures, Ph.D. Thesis, Oxford, 1980.
  • [11] -, The first formal neighborhood of ambitwistor space for curved space-time, Lett. Math. Phys. 6 (1982), 345-354. MR 677436 (84d:32044)
  • [12] -, $ H$-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185. MR 652038 (83d:83019)
  • [13] Yu. I. Manin, Sovremennye problemy matematiki, Vol. 17, "Nauka", Moscow, 1981.
  • [14] J. Milnor and I. Stasheff, Characteristic classes, Ann. of Math. Studies, No. 76, Princeton Univ. Press, Princeton, N.J., 1974. MR 0440554 (55:13428)
  • [15] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity and Gravitation 7 (1976), 31-52. MR 0439004 (55:11905)
  • [16] A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., no. 29, Amer. Math. Soc., Providence, R. I., 1977. MR 0464312 (57:4244)
  • [17] J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math. 3 (1932), 33-42.
  • [18] E. Witten, Phys. Lett. B 77 (1978), 394-397.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32G10, 32D15, 32L25, 53C22, 83C99

Retrieve articles in all journals with MSC: 32G10, 32D15, 32L25, 53C22, 83C99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697071-9
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society