Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Sign changes in harmonic analysis on reductive groups


Author: Robert E. Kottwitz
Journal: Trans. Amer. Math. Soc. 278 (1983), 289-297
MSC: Primary 22E35; Secondary 22E30
MathSciNet review: 697075
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected reductive group over a field $ F$. In this note the author constructs an element $ e(G)$ of the Brauer group of $ F$. The square of this element is trivial. For a local field, $ e(G)$ may be regarded as an element of $ \{ \pm 1\} $ and is needed for harmonic analysis on reductive groups over that field. For a global field there is a product formula.


References [Enhancements On Off] (What's this?)

  • [1] Daniel Flath, A comparison of the automorphic representations of 𝐺𝐿(3) and its twisted forms, Pacific J. Math. 97 (1981), no. 2, 373–402. MR 641166
  • [2] Stephen Gelbart and Hervé Jacquet, Forms of 𝐺𝐿(2) from the analytic point of view, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213–251. MR 546600
  • [3] Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
  • [4] H. Jacquet and R. P. Langlands, Automorphic forms on 𝐺𝐿(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • [5] R. Kottwitz, Orbital integrals and base change, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–113. MR 546612
  • [6] R. P. Langlands, Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979), no. 4, 700–725. MR 540901, 10.4153/CJM-1979-069-2
  • [7] Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 67. MR 0347778
  • [8] D. Shelstad, Characters and inner forms of a quasi-split group over 𝑅, Compositio Math. 39 (1979), no. 1, 11–45. MR 539000

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E35, 22E30

Retrieve articles in all journals with MSC: 22E35, 22E30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0697075-6
Article copyright: © Copyright 1983 American Mathematical Society