Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A note on Michael's problem concerning the Lindelöf property in the Cartesian products


Author: K. Alster
Journal: Trans. Amer. Math. Soc. 278 (1983), 369-375
MSC: Primary 54B10; Secondary 54D20
DOI: https://doi.org/10.1090/S0002-9947-1983-0697081-1
MathSciNet review: 697081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we present a sketch of a negative solution of the Michael's conjecture which says that if the product $ Y \times X$ is Lindelöf for every hereditarily Lindelöf space $ Y$, then $ Y \times {X^\omega }$ is Lindelöf for every hereditarily Lindelöf space $ Y$.


References [Enhancements On Off] (What's this?)

  • [AL $ _{\mathbf{1}}$] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181. MR 644402 (83c:54029)
  • [AL $ _{\mathbf{2}}$] -, Some remarks on Michael's question concerning Cartesian product of Lindelöf spaces, Colloq. Math. 47 (1982), 23-29. MR 679380 (83m:54035)
  • [AL $ _{\mathbf{3}}$] -, On Michael's problem concerning the Lindelöf property in the Cartesian products, Fund. Math. (to appear).
  • [E] R. Engelking, General topology, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [F] Z. Frolik, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 8 (1960), 747-750. MR 0125559 (23:A2859)
  • [N] N. Noble, Products with closed projection. II, Trans. Amer. Math. Soc. 160 (1971), 169-183. MR 0283749 (44:979)
  • [P] R. Pol, A function space $ C(X)$ which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-285. MR 544732 (80j:46042)
  • [T] R. Telgarski, $ C$-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74. MR 0295293 (45:4361)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54B10, 54D20

Retrieve articles in all journals with MSC: 54B10, 54D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697081-1
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society