Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Group rings which are Azumaya algebras

Authors: F. R. DeMeyer and G. J. Janusz
Journal: Trans. Amer. Math. Soc. 279 (1983), 389-395
MSC: Primary 16A16; Secondary 16A26, 16A27
MathSciNet review: 704622
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The group ring $ RG$ of a group $ G$ over a ring $ R$ (with identity $ 1(R)$) is a separable algebra over its center if and only if the following conditions hold:

(a) $ R$ is a separable algebra over its center;

(b) the center of $ G$ has finite index in $ G$:

(c) the commutator subgroup $ G^{\prime}$ of $ G$ has finite order $ m$ and $ m1(R)$ is invertible in $ R$.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 0121392 (22:12130)
  • [2] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [3] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math., vol. 181, Springer, Berlin and New York, 1971. MR 0280479 (43:6199)
  • [4] L. Dornhoff, Group representation theory, Part B, Dekker, New York, 1972. MR 0347960 (50:458b)
  • [5] K. Morita, On group rings over a modular field, Sci. Rep. Tokyo Bunrika Daigaku 4 (1951), 177-194. MR 0049909 (14:246a)
  • [6] D. S. Passman, Algebraic structure of group rings, Wiley, New York, 1977. MR 470211 (81d:16001)
  • [7] C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593-632. MR 0376746 (51:12921)
  • [8] O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand, Princeton, N. J., 1960. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A16, 16A26, 16A27

Retrieve articles in all journals with MSC: 16A16, 16A26, 16A27

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society