Group rings which are Azumaya algebras

Authors:
F. R. DeMeyer and G. J. Janusz

Journal:
Trans. Amer. Math. Soc. **279** (1983), 389-395

MSC:
Primary 16A16; Secondary 16A26, 16A27

MathSciNet review:
704622

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The group ring of a group over a ring (with identity ) is a separable algebra over its center if and only if the following conditions hold:

(a) is a separable algebra over its center;

(b) the center of has finite index in :

(c) the commutator subgroup of has finite order and is invertible in .

**[1]**Maurice Auslander and Oscar Goldman,*The Brauer group of a commutative ring*, Trans. Amer. Math. Soc.**97**(1960), 367–409. MR**0121392**, 10.1090/S0002-9947-1960-0121392-6**[2]**Charles W. Curtis and Irving Reiner,*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR**0144979****[3]**Frank DeMeyer and Edward Ingraham,*Separable algebras over commutative rings*, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR**0280479****[4]**Larry Dornhoff,*Group representation theory. Part B: Modular representation theory*, Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, 7. MR**0347960****[5]**Kiiti Morita,*On group rings over a modular field which possess radicals expressible as principal ideals*, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A.**4**(1951), 177–194. MR**0049909****[6]**Donald S. Passman,*The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR**470211****[7]**C. T. C. Wall,*Norms of units in group rings*, Proc. London Math. Soc. (3)**29**(1974), 593–632. MR**0376746****[8]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A16,
16A26,
16A27

Retrieve articles in all journals with MSC: 16A16, 16A26, 16A27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0704622-4

Article copyright:
© Copyright 1983
American Mathematical Society