Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders


Authors: Eugene Fabes and Sandro Salsa
Journal: Trans. Amer. Math. Soc. 279 (1983), 635-650
MSC: Primary 35K05; Secondary 31C99
DOI: https://doi.org/10.1090/S0002-9947-1983-0709573-7
MathSciNet review: 709573
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the authors prove unique solvability of the initial-Dirichlet problem for the heat equation in a cylindrical domain with Lipschitz base, lateral data in $ {L^p},p \geqslant 2$, and zero initial values. A Poisson kernel for this problem is shown to exist with the property that its $ {L^2}$-averages over parabolic rectangles are equivalent to $ {L^1}$-averages over the same sets.


References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [2] B. E. J. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 272-288. MR 0466593 (57:6470)
  • [3] -, On the Poisson integral for Lipschitz and $ {C^1}$ domains, Studia Math. 66 (1979), 13-24. MR 562447 (81g:31007)
  • [4] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 0181836 (31:6062)
  • [5] J. Kemper, Temperatures in several variables: Kernel functions, representation and parabolic boundary values, Trans. Amer. Math. Soc. 107 (1972), 243-262. MR 0294903 (45:3971)
  • [6] -, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math. 25 (1972), 247-255. MR 0293114 (45:2193)
  • [7] D. S. Jerison and C. E. Kenig, The Dirichlet problem in nonsmooth domains, Ann. of Math. (2) 113 (1981), 367-382. MR 607897 (84j:35076)
  • [8] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure. Appl. Math. 17 (1964), 101-134. MR 0159139 (28:2357)
  • [9] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [10] J. M. Wu, On parabolic measures and superparabolic functions, Trans. Amer. Math. Soc. 251 (1979), 171-185. MR 531974 (82b:31019a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K05, 31C99

Retrieve articles in all journals with MSC: 35K05, 31C99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0709573-7
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society