Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Linearization of second-order nonlinear oscillation theorems


Authors: Man Kam Kwong and James S. W. Wong
Journal: Trans. Amer. Math. Soc. 279 (1983), 705-722
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9947-1983-0709578-6
MathSciNet review: 709578
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of oscillation of super- and sublinear Emden-Fowler equations is studied. Established are a number of oscillation theorems involving comparison with related linear equations. Recent results on linear oscillation can thus be used to obtain interesting oscillation criteria for nonlinear equations.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, On second order nonlinear oscillation, Pacific J. Math. 5 (1955), 643-647. MR 0072316 (17:264e)
  • [2] J. H. Barrett, Oscillation theory of ordinary linear differential equations, Adv. in Math. 3 (1969), 415-509. MR 0257462 (41:2113)
  • [3] S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Časopis Sloven Akad. Vied. 11 (1961), 250-255. (Czech)
  • [4] -, Two remarks on the properties of solutions of a nonlinear differential equation, Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 22 (1969), 19-26. MR 0289855 (44:7042)
  • [5] G. J. Butler, On the oscillatory behavior of a second order nonlinear differential equation, Ann. Mat. Pura Appl. 105 (1975), 73-92. MR 0425252 (54:13209)
  • [6] -, Oscillation theorems for a nonlinear analogue of Hill's equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), 159-171. MR 0409976 (53:13727)
  • [7] -, Hille Wintner type comparison theorems for second order ordinary differential equations, Proc. Amer. Math. Soc. 76 (1979), 159-171. MR 534390 (80h:34039)
  • [8] -, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), 190-200. MR 556509 (80m:34028)
  • [9] W. J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat. Pura Appl. 82 (1969), 123-134. MR 0255907 (41:567)
  • [10] W. J. Coles and D. Willett, Summability criteria for oscillation of second order linear differential equations, Ann. Mat. Pura Appl. 79 (1968), 391-398. MR 0236462 (38:4757)
  • [11] W. A. Coppel, Disconjugacy, Lecture Notes in Math., vol. 220, Springer-Verlag, Berlin, Heidelberg and New York, 1971. MR 0460785 (57:778)
  • [12] L. Erbe, Oscillation theorems for second order nonlinear differential equations, Proc. Amer. Math. Soc. 24 (1970), 811-814. MR 0252756 (40:5973)
  • [13] -, Oscillation criteria for second order nonlinear differential equations, Ann. Mat. Pura Appl. 94 (1972), 257-268. MR 0316819 (47:5367)
  • [14] P. Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389-400. MR 0048667 (14:50b)
  • [15] -, Ordinary differential equations, Wiley, New York, 1964. MR 0171038 (30:1270)
  • [16] I. V. Kamenev, Some specially nonlinear oscillation theorems, Mat. Zametki 10 (1971), 129-134. MR 0287077 (44:4284)
  • [17] I. T. Kamenev, Oscillation criteria related to averaging of solutions of ordinary differential equations of second order, Differencial'nye Uravnenija 10 (1974), 246-252. (Russian) MR 0335940 (49:718)
  • [18] I. T. Kiguradze, A note on the oscillation of solution of the equation $ u'' + a(t){u^n}\operatorname{sgn} u = 0$, Časopis Pěst. Mat. 92 (1967), 343-350. MR 0221012 (36:4064)
  • [19] V. Komkov, A technique for the detection of oscillation of second order ordinary differential equations, Pacific J. Math. 42 (1972), 105-115. MR 0313580 (47:2134)
  • [20] M. K. Kwong, On certain Riccati integral equations and second order linear oscillation, J. Math. Anal. Appl. 85 (1982), 315-330. MR 649178 (83f:34035)
  • [21] Man Kam Kwong and J. S. W. Wong, On an oscillation theorem of Belohorec, SIAM J. Math. Anal. 14 (1983), MR 697523 (84g:34061)
  • [22] -, On the oscillation and nonoscillation of second order sublinear equations, Proc. Amer. Math. Soc. 85 (1982), 547-551. MR 660602 (84g:34060)
  • [23] -, An application of integral inequality to second order nonlinear oscillation, J. Differential Equations 46 (1982), 63-77. MR 677584 (84g:34059)
  • [24] Man Kam Kwong and A. Zettl, Differential and integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), 16-33. MR 662484 (83i:34034)
  • [25] -, Asymptotically constant functions and second order linear oscillation, J. Math. Anal. Appl. (to appear). MR 700159 (84k:34044)
  • [26] J. W. Macki and J. S. W. Wong, Oscillation criteria for linear second order ordinary differential equations, Proc. Amer. Math. Soc. 20 (1969), 67-72. MR 0235202 (38:3513)
  • [27] L. Markus and R. A. Moore, Oscillation and disconjugacy for linear differential equations with almost periodic coefficients, Acta Math. 96 (1956), 99-123. MR 0080813 (18:306d)
  • [28] H. Onose, Oscillation criteria for second order nonlinear differential equations, Proc. Amer. Math. Soc. 51 (1975), 67-73. MR 0369813 (51:6042)
  • [29] R. V. Petropavlovskaya, On oscillation of solutions of the equation $ u'' + p(x)u=0$, Dokl. Akad. Nauk SSSR (NS) 105 (1955), 29-31. (Russian) MR 0075374 (17:737c)
  • [30] C. R. Putnam, Note on some oscillation criteria, Proc. Amer. Math. Soc. 6 (1955), 950-952. MR 0074613 (17:615c)
  • [31] M. Rab, Kriterien fur die Oszillation der Lozungen der Differenzialgleichung $ (p(x)y^{\prime})^{\prime} + g(x)y = 0$, Časopis Pěst. Mat. 84 (1959), 335-370; errata, ibid. 85 (1960), 91. MR 0114964 (22:5773)
  • [32] Stanek Svatoslav, A note on the oscillation of solutions of the differential equation $ y'' = \lambda q(t)y$ with a periodic coefficient, Czechoslovak Math. J. 29 (1979), 318-323. MR 529519 (80c:34032)
  • [33] W. R. Utz, Properties of solutions of $ u'' + g(t){u^{2n - 1}} = 0$, Monatsh. Math. 66 (1962), 55-60. MR 0138834 (25:2275)
  • [34] P. Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), 439-441. MR 0173050 (30:3265)
  • [35] D. Willett, On the oscillatory behaviour of the solution of second order linear differential equations, Ann. Polon. Math. 21 (1969), 175-194. MR 0249723 (40:2964)
  • [36] -, Classification of second order linear differential equations with respect to oscillation, Adv. in Math. 3 (1969), 594-623. MR 0280800 (43:6519)
  • [37] A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117. MR 0028499 (10:456a)
  • [38] J. S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1969), 207-234. MR 0245915 (39:7221)
  • [39] -, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. MR 0251305 (40:4536)
  • [40] -, A second order nonlinear oscillation theorem, Proc. Amer. Math. Soc. 40 (1973), 487-491. MR 0318585 (47:7132)
  • [41] -, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. Sinica 3 (1975), 283-309. MR 0390372 (52:11198)
  • [42] -, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360. MR 0367368 (51:3610)
  • [43] M. Yelchin, Sur le condition pour q'une solution d'un système linéaire du second ordre possede deux zeros, Dokl. Akad. Nauk SSSR 51 (1946), 573-576. MR 0017849 (8:208b)
  • [44] M. Zlamal, Oscillation criteria, Časopis Pěst. Mat. 75 (1950), 213-217.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0709578-6
Keywords: Second order, nonlinear, differential equations, oscillation
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society