Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some prime elements in the lattice of interpretability types


Author: Pavel Pudlák
Journal: Trans. Amer. Math. Soc. 280 (1983), 255-275
MSC: Primary 03F25; Secondary 03B10, 03H15
DOI: https://doi.org/10.1090/S0002-9947-1983-0712260-2
MathSciNet review: 712260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general theorem is proved which implies that the types of PA (Peano Arithmetic), ZF (Zermelo-Fraenkel Set Theory) and GB (Gödel-Bernays Set Theory) are prime in the lattice of interpretability types.


References [Enhancements On Off] (What's this?)

  • [1] A. Ehrenfeucht and J. Mycielski, Theorems and problems on the lattice of local interpretability, manuscript.
  • [2] H. Gaifman and C. Dimitracopoulos, Fragments of Peano's arithmetic and $ MRDP$ theorem, Monograph. No. 30, Enseign. Math., Logic and Algorithmic, Genève, 1982, pp. 187-206. MR 648303 (83j:03095)
  • [3] P. Lindström, Some results on interpretability, Proc. Fifth Scandinavian Logic Symposium, Aalborg Univ. Press, 1979, pp. 329-353. MR 606608 (82i:03065)
  • [4] R. Montague, Theories incomparable with respect to relative interpretability, J. Symbolic Logic 27 (1962), 195-211. MR 0155750 (27:5684)
  • [5] J. Mycielski, A lattice of interpretability types of theories, J. Symbolic Logic 42 (1977), 297-305. MR 0505480 (58:21594)
  • [6] J. B. Paris and C. Dimitracopoulos, A note on undefinability of cuts, J. Symbolic Logic (to appear). MR 716616 (84k:03151)
  • [7] -, Truth definitions for $ {\Delta _0}$ formulae, Monograph. No. 30, Enseign. Math., Logic and Algorithmic, Genève, 1982, pp. 317-329. MR 648309 (84d:03041)
  • [8] V. Švejdar, Degrees of interpretability, Comment. Math. Univ. Carolin. 19 (1978), 789-813. MR 518190 (80e:03072)
  • [9] A. Tarski, A. Mostowski and R. M. Robinson, Undecidable theories, North-Holland, Amsterdam, 1953. MR 0058532 (15:384h)
  • [10] R. L. Vaught, Axiomatizability by a schema, Symbolic Logic 32 (1967), 471-479. MR 0228335 (37:3916)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03F25, 03B10, 03H15

Retrieve articles in all journals with MSC: 03F25, 03B10, 03H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0712260-2
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society