Representations of generic algebras and finite groups of Lie type

Authors:
R. B. Howlett and G. I. Lehrer

Journal:
Trans. Amer. Math. Soc. **280** (1983), 753-779

MSC:
Primary 20G05; Secondary 16A64, 16A65

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716849-6

MathSciNet review:
716849

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The complex representation theory of a finite Lie group is related to that of certain "generic algebras". As a consequence, formulae are derived ("the Comparison Theorem"), relating multiplicities in to multiplicities in the Weyl group of . Applications include an explicit description of the dual (see below) of an arbitrary irreducible complex representation of .

**[1]**Dean Alvis,*The duulity operation in the character ring of a finite Chevalley group*, Bull. Amer. Math. Soc.**1**(1979), 907-911. MR**546315 (81e:20012)****[2]**N. Bourbaki,*Algèbre commutatif*, Hermann, Paris, 1964, Chapters 5, 6. MR**0194450 (33:2660)****[3]**C. W. Curtis,*Truncation and duality in the character ring of a finite group of Lie type*, 3. Algebra**62**(1980), 320-332. MR**563231 (81e:20011)****[4]**-,*Reduction theorems for characters of finite groups of Lie type*, J. Math. Soc. Japan**27**(1975), 666-688. MR**0399282 (53:3133)****[5]**C. W. Curtis, N. Iwahori and R. Kilmoyer,*Hecke algebras and characters of parabolic type of finite groups with*-*pairs*, Inst. Hautes Etudes Sci. Publ. Math.**40**(1971), 81-116. MR**0347996 (50:494)****[6]**C. W. Curtis and I. Reiner,*Representation theory of finite groups and associative algebras*, Interscience, Wiley, New York, 1962. MR**0144979 (26:2519)****[7]**R. B. Howlett and G. I. Lehrer,*A comparison theorem and other formulae in the character ring of a finite group of Lie type*, Papers in Algebra, Analysis and Statistics (Proc. 21st Austral. Math. Soc. Summer Res. Inst.), Contemporary Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1982, pp. 285-289. MR**655984 (84b:20055)****[8]**-, Duality in the normalizer of a parabolic subgroup, Bull. London Math. Soc.**14**(1982), 133-136. MR**647196 (83e:20049)****[9]**-,*Induced cuspidal representations and generalized Hecke rings*, Invent. Math.**58**(1980), 37-64. MR**570873 (81j:20017)****[10]**G. Lusztig,*Irreducible representations of finite classical groups*, Invent. Math.**38**(1976), 101-159. MR**0463275 (57:3228)****[11]**N. Iwahori,*Generalized Tits systems (Bruhat decomposition) on*-*adic semisimple groups*, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 71-83. MR**0215858 (35:6693)****[12]**K. McGovern,*Multiplicities of principal series representations of finite groups with split**pairs*, J. Algebra**77**(1982), 419-442. MR**673126 (84d:20040)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20G05,
16A64,
16A65

Retrieve articles in all journals with MSC: 20G05, 16A64, 16A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0716849-6

Article copyright:
© Copyright 1983
American Mathematical Society