Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representations of generic algebras and finite groups of Lie type


Authors: R. B. Howlett and G. I. Lehrer
Journal: Trans. Amer. Math. Soc. 280 (1983), 753-779
MSC: Primary 20G05; Secondary 16A64, 16A65
DOI: https://doi.org/10.1090/S0002-9947-1983-0716849-6
MathSciNet review: 716849
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The complex representation theory of a finite Lie group $ G$ is related to that of certain "generic algebras". As a consequence, formulae are derived ("the Comparison Theorem"), relating multiplicities in $ G$ to multiplicities in the Weyl group $ W$ of $ G$. Applications include an explicit description of the dual (see below) of an arbitrary irreducible complex representation of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] Dean Alvis, The duulity operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Soc. 1 (1979), 907-911. MR 546315 (81e:20012)
  • [2] N. Bourbaki, Algèbre commutatif, Hermann, Paris, 1964, Chapters 5, 6. MR 0194450 (33:2660)
  • [3] C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, 3. Algebra 62 (1980), 320-332. MR 563231 (81e:20011)
  • [4] -, Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan 27 (1975), 666-688. MR 0399282 (53:3133)
  • [5] C. W. Curtis, N. Iwahori and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $ BN$-pairs, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971), 81-116. MR 0347996 (50:494)
  • [6] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, Wiley, New York, 1962. MR 0144979 (26:2519)
  • [7] R. B. Howlett and G. I. Lehrer, A comparison theorem and other formulae in the character ring of a finite group of Lie type , Papers in Algebra, Analysis and Statistics (Proc. 21st Austral. Math. Soc. Summer Res. Inst.), Contemporary Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1982, pp. 285-289. MR 655984 (84b:20055)
  • [8] -, Duality in the normalizer of a parabolic subgroup, Bull. London Math. Soc. 14 (1982), 133-136. MR 647196 (83e:20049)
  • [9] -, Induced cuspidal representations and generalized Hecke rings, Invent. Math. 58 (1980), 37-64. MR 570873 (81j:20017)
  • [10] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 38 (1976), 101-159. MR 0463275 (57:3228)
  • [11] N. Iwahori, Generalized Tits systems (Bruhat decomposition) on $ p$-adic semisimple groups, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 71-83. MR 0215858 (35:6693)
  • [12] K. McGovern, Multiplicities of principal series representations of finite groups with split $ (B,N)$ pairs, J. Algebra 77 (1982), 419-442. MR 673126 (84d:20040)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G05, 16A64, 16A65

Retrieve articles in all journals with MSC: 20G05, 16A64, 16A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0716849-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society