Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The $ \bar \partial $-Neumann solution to the inhomogeneous Cauchy-Riemann equation in the ball in $ {\bf C}\sp{n}$

Authors: F. Reese Harvey and John C. Polking
Journal: Trans. Amer. Math. Soc. 281 (1984), 587-613
MSC: Primary 32A25; Secondary 35N15
MathSciNet review: 722764
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \vartheta $ denote the formal adjoint of the Cauchy-Riemann operator $ \overline \partial $ on $ {{\mathbf{C}}^n}$, and let $ N$ denote the Kohn-Neumann operator on the unit ball in $ {{\mathbf{C}}^n}$. The operator $ \vartheta \; \circ \;N$ provides a natural fundamental solution for $ \overline \partial f = g$ on the ball. It is our purpose to present the kernel $ P$ for this operator $ \vartheta \; \circ \;N$ explicitly--the coefficients are exhibited as rational functions.

References [Enhancements On Off] (What's this?)

  • [C] Philippe Charpentier, Formules explicites pour les solutions minimales de l’équation ∂𝑢=𝑓 dans la boule et dans le polydisque de 𝐶ⁿ, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 121–154 (French). MR 599627
  • [DH] Jiri Dadok and Reese Harvey, The fundamental solution for the Kohn-Laplacian 𝑐𝑚_{𝑏} on the sphere in 𝐶ⁿ, Math. Ann. 244 (1979), no. 2, 89–104. MR 550841, 10.1007/BF01420485
  • [FK] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR 0461588
  • [FS] G. B. Folland and E. M. Stein, Estimates for the ∂_{𝑏} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 0367477
  • [GS] P. C. Greiner and E. M. Stein, Estimates for the \overline∂-Neumann problem, Princeton University Press, Princeton, N.J., 1977. Mathematical Notes, No. 19. MR 0499319
  • [H1] G. M. Henkin, Solutions with bounds for the equations of H. Lewy and Poincaré-Lelong. Construction of functions of Nevanlinna class with given zeros in a strongly pseudoconvex domain, Dokl. Akad. Nauk SSSR 224 (1975), no. 4, 771–774 (Russian). MR 0466634
  • [H2] G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
  • [HP1] Reese Harvey and John Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46 (1979), no. 2, 253–300. MR 534054
  • [HP2] F. R. Harvey and J. C. Polking, The ∂-Neumann kernel in the ball in 𝐶ⁿ, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 117–136. MR 740876, 10.1090/pspum/041/740876
  • [HR] A. V. Romanov and G. M. Henkin, Exact Hölder estimates of the solutions of the 𝛿-equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183 (Russian). MR 0293121
  • [K] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 0153030
  • [Kr] Steven G. Krantz, Estimates for integral kernels of mixed type, fractional integration operators, and optimal estimates for the ∂ operator, Manuscripta Math. 30 (1979/80), no. 1, 21–52. MR 552362, 10.1007/BF01305989
  • [O] Nils Øvrelid, Integral representation formulas and 𝐿^{𝑝}-estimates for the ∂-equation, Math. Scand. 29 (1971), 137–160. MR 0324073
  • [Ph] D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554–1558. MR 526179
  • [S] Henri Skoda, Valeurs au bord pour les solutions de l’opérateur 𝑑”, et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), no. 3, 225–299 (French). MR 0450620
  • [St] Nancy K. Stanton, The solution of the ∂-Neumann problem in a strictly pseudoconvex Siegel domain, Invent. Math. 65 (1981/82), no. 1, 137–174. MR 636884, 10.1007/BF01389299

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32A25, 35N15

Retrieve articles in all journals with MSC: 32A25, 35N15

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society