On Block's condition for simple periodic orbits of functions on an interval

Author:
Chung-Wu Ho

Journal:
Trans. Amer. Math. Soc. **281** (1984), 827-832

MSC:
Primary 54H20; Secondary 26A18, 58F08, 58F20

DOI:
https://doi.org/10.1090/S0002-9947-1984-0722777-3

MathSciNet review:
722777

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, L. Block has shown that for any mapping of an interval, whether has a periodic point whose period contains an odd factor greater than depends entirely on the periodic orbits of whose periods are powers of . In this paper the author shows that Block's result is a special case of a more general phenomenon.

**[1]**L. Block.*Simple periodic orbits of mappings of the interval*, Trans. Amer. Math. Soc.**254**(1979), 391-398. MR**539925 (80m:58031)****[2]**L. Block, J. Guckenheimer, M. Misiurewicz and L. Young,*Periodic points and topological entropy of one dimensional maps*(Proc. Conf. Global Theory of Dynamical Systems), Lecture Notes in Math., vol. 819, Springer-Verlag, Berlin, 1980, pp. 18-34. MR**591173 (82j:58097)****[3]**C.-w. Ho,*On the structure of the minimum orbits of periodic points for maps of the real line*(to appear).**[4]**C.-w. Ho and C. Morris,*A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions*, Pacific J. Math.**96**(1981), 361-370. MR**637977 (83d:58056)****[5]**Z. Nitecki,*Topological dynamics on the interval*, Ergodic Theory and Dynamical Systems, Vol. II, Progress in Math., Birkhäuser, Boston, Mass., 1981. MR**670074 (84g:54051)****[6]**A. N. Sharkovskii,*Co-existence of the cycles of a continuous mapping of the line into itself*, Ukranian Math. Z.**16**(1964), 61-71. MR**0159905 (28:3121)****[7]**P. Štefan,*A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), 237-248. MR**0445556 (56:3894)****[8]**P. D. Straffin, Jr.,*Periodic points of continuous functions*, Math. Mag.**51**(1978), 99-105. MR**498731 (80h:58043)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54H20,
26A18,
58F08,
58F20

Retrieve articles in all journals with MSC: 54H20, 26A18, 58F08, 58F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0722777-3

Article copyright:
© Copyright 1984
American Mathematical Society