Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variational problems with two phases and their free boundaries


Authors: Hans Wilhelm Alt, Luis A. Caffarelli and Avner Friedman
Journal: Trans. Amer. Math. Soc. 282 (1984), 431-461
MSC: Primary 49A29; Secondary 35J85
DOI: https://doi.org/10.1090/S0002-9947-1984-0732100-6
MathSciNet review: 732100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of minimizing $ \int {[\nabla \upsilon {\vert^2}} + {q^2}(x){\lambda ^2}(\upsilon )]dx$ in an appropriate class of functions $ \upsilon $ is considered. Here $ q(x) \ne 0$ and $ {\lambda ^2}(\upsilon ) = \lambda _1^2$if $ \upsilon < 0, = \lambda _2^2$ if $ \upsilon > 0$. Any minimizer $ u$ is harmonic in $ \{ u \ne 0\} $ and $ \vert\nabla u{\vert^2}$ has a jump

$\displaystyle {q^2}(x)\left( {\lambda _1^2 - \lambda _2^2} \right)$

across the free boundary $ \{ u \ne 0\} $. Regularity and various properties are established for the minimizer $ u$ and for the free boundary.

References [Enhancements On Off] (What's this?)

  • [1] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary J. Reine Angew. Math. 325 (1981), 105-144. MR 618549 (83a:49011)
  • [2] H. W. Alt, L. A. Caffarelli and A. Friedman, Axially symmetric jet flows, Arch. Rational Mech. Anal. 81 (1983), 97-149. MR 682265 (84g:35144)
  • [3] -, Asymmetric jet flows, Comm. Pure Appl. Math. 35 (1982), 29-68. MR 637494 (83h:76011)
  • [4] -, Jet flows with gravity, J. Reine Angew. Math. 331 (1982), 58-103. MR 647374 (84e:76012)
  • [5] -, Jets with two fluids. I. One free boundary, Indiana Univ. Math. J. (to appear). MR 733897 (86a:35144)
  • [6] -, Jets with two fluids. II. Two free boundaries, Indiana Univ. Math. J. (to appear). MR 740956 (86a:35145)
  • [7] H. F'd'er, Geometric measure theory,Springer-Verlag, Berlin, Heidelberg and New York, 1969. MR 0257325 (41:1976)
  • [8] S. Friedland and W. K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helv. 51 (1976), 133-161. MR 0412442 (54:568)
  • [9] A. Friedman, Variational principles and free boundary problems, Interscience, New York, 1982. MR 679313 (84e:35153)
  • [10] E. Giusti, Minimal surfaces and functions of bounded variation, Notes on Pure Mathematics, Australian National Univ., Canberra, 1977. MR 0638362 (58:30685)
  • [11] C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, Heidelberg and New York, 1966. MR 0202511 (34:2380)
  • [12] E. Sperner, Zur symmetrisierung von funktionen auf Sphären, Math. Z. 134 (1973), 317-327. MR 0340558 (49:5310)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49A29, 35J85

Retrieve articles in all journals with MSC: 49A29, 35J85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732100-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society