Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On maximal rearrangement inequalities for the Fourier transform


Authors: W. B. Jurkat and G. Sampson
Journal: Trans. Amer. Math. Soc. 282 (1984), 625-643
MSC: Primary 42B10; Secondary 26D15
DOI: https://doi.org/10.1090/S0002-9947-1984-0732111-0
MathSciNet review: 732111
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ w$ is a measurable function on $ {{\mathbf{R}}^n}$ and denote by $ W = {w^ \ast }$ the decreasing rearrangement of $ \left\vert w \right\vert$ (provided that it exists). We show that the $ n$-dimensional Fourier transform $ \hat f$ satisfies (1)

$\displaystyle {\left\Vert {w\hat f} \right\Vert _q} \leqslant {\left\Vert {W{{(... ...t)\int_0^{1/t} {{f^ \ast }} } \right\Vert\quad (C\ {\text{absolute constant}}),$

if $ 1 < q < \infty $ and $ {t^{2/q - 1}}W(t) \searrow $ for $ t > 0$. We also show that (2)

$\displaystyle {\left\Vert {w\hat f} \right\Vert _q} \geqslant {c_{n,q}}{\left\V... ...\vert x \right\vert} {f(y)} dy} \right\Vert _q}\quad (f\ {\text{nonnegative),}}$

if $ 1 < q < \infty $ and $ w$ is nonnegative and symmetrically decreasing. Inequality (2) implies that (1) is maximal in the sense that the left side reaches the right side if $ f$ is nonnegative and symmetrically decreasing. Hence, (1) implies all other possible estimates in terms of $ W$ and $ {f^ \ast }$. The cases $ q \ne 2$ of (1) can be derived from the case $ q = 2$ (and same $ f$) by a convexity principle which does not involve interpolation. The analogue of (1) for Fourier series is due to H. L. Montgomery if $ q \geqslant 2$ (then the extra condition on $ W$ is automatically satisfied).

References [Enhancements On Off] (What's this?)

  • [1] A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169. MR 0417406 (54:5456)
  • [2] R. M. Gabriel, A "star inequality" for harmonic functions, Proc. London Math. Soc. 34 (1932), 305-313.
  • [3] G. H. Hardy, Orders of infinity, the "infinitärcalcül" of Paul DuBois-Reymond, Cambridge Univ. Press, London and New York, 1910.
  • [4] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
  • [5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London and New York, 1934.
  • [6] W. B Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Math. J. (to appear). MR 733899 (85k:42040)
  • [7] J. E. Littlewood, On a theorem of Paley, J. London Math. Soc. 29 (1954), 387-395. MR 0063473 (16:126e)
  • [8] -, On inequalities between $ f$ and $ {f^ \ast }$, J. London Math. Soc. 35 (1960), 352-365. MR 0130945 (24:A799)
  • [9] H. L. Montgomery, A note on rearrangements of Fourier coefficients, Ann. Inst. Fourier (Grenoble) 26 (1976), 29-34. MR 0407517 (53:11292)
  • [10] B. Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), 729-742. MR 688974 (84m:42019)
  • [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [12] A. Zygmund, Trigonometric series, Vol. 2, Cambridge Univ. Press, London and New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10, 26D15

Retrieve articles in all journals with MSC: 42B10, 26D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732111-0
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society