On maximal rearrangement inequalities for the Fourier transform

Authors:
W. B. Jurkat and G. Sampson

Journal:
Trans. Amer. Math. Soc. **282** (1984), 625-643

MSC:
Primary 42B10; Secondary 26D15

MathSciNet review:
732111

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that is a measurable function on and denote by the decreasing rearrangement of (provided that it exists). We show that the -dimensional Fourier transform satisfies (1)

**[1]**Albert Baernstein II,*Integral means, univalent functions and circular symmetrization*, Acta Math.**133**(1974), 139–169. MR**0417406****[2]**R. M. Gabriel,*A "star inequality" for harmonic functions*, Proc. London Math. Soc.**34**(1932), 305-313.**[3]**G. H. Hardy,*Orders of infinity, the "infinitärcalcül" of Paul DuBois-Reymond*, Cambridge Univ. Press, London and New York, 1910.**[4]**G. H. Hardy and J. E. Littlewood,*Some new properties of Fourier constants*, J. London Math. Soc.**6**(1931), 3-9.**[5]**G. H. Hardy, J. E. Littlewood and G. Pólya,*Inequalities*, Cambridge Univ. Press, London and New York, 1934.**[6]**W. B. Jurkat and G. Sampson,*On rearrangement and weight inequalities for the Fourier transform*, Indiana Univ. Math. J.**33**(1984), no. 2, 257–270. MR**733899**, 10.1512/iumj.1984.33.33013**[7]**J. E. Littlewood,*On a theorem of Paley*, J. London Math. Soc.**29**(1954), 387–395. MR**0063473****[8]**J. E. Littlewood,*On the inequalities between functions 𝑓 and 𝑓**, J. London Math. Soc.**35**(1960), 352–365. MR**0130945****[9]**Hugh L. Montgomery,*A note on rearrangements of Fourier coefficients*, Ann. Inst. Fourier (Grenoble)**26**(1976), no. 2, v, 29–34 (English, with French summary). MR**0407517****[10]**Benjamin Muckenhoupt,*Weighted norm inequalities for the Fourier transform*, Trans. Amer. Math. Soc.**276**(1983), no. 2, 729–742. MR**688974**, 10.1090/S0002-9947-1983-0688974-X**[11]**Elias M. Stein and Guido Weiss,*Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR**0304972****[12]**A. Zygmund,*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42B10,
26D15

Retrieve articles in all journals with MSC: 42B10, 26D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0732111-0

Article copyright:
© Copyright 1984
American Mathematical Society