An integral inequality with applications

Author:
M. A. Leckband

Journal:
Trans. Amer. Math. Soc. **283** (1984), 157-168

MSC:
Primary 26D20; Secondary 26A51

MathSciNet review:
735413

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using a technical integral inequality, J. Moser proved a sharp result on exponential integrability of a certain space of Sobolev functions. In this paper, we show that the integral inequality holds in a general setting using nonincreasing functions and a certain class of convex functions. We then apply the integral inequality to extend the above result by J. Moser to other spaces of Sobolev functions. A second application is given generalizing some different results by M. Jodeit.

**[1]**Richard A. Hunt,*On 𝐿(𝑝,𝑞) spaces*, Enseignement Math. (2)**12**(1966), 249–276. MR**0223874****[2]**Max Jodeit Jr.,*An inequality for the indefinite integral of a function in 𝐿^{𝑞}*, Studia Math.**44**(1972), 545–554. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI. MR**0341055****[3]**B. F. Jones,*A note on Holder's inequality*, Studia Math.**64**(1979), 272-278.**[4]**J. Moser,*A sharp form of an inequality by N. Trudinger*, Indiana Univ. Math. J.**20**(1970/71), 1077–1092. MR**0301504****[5]**G. D. Mostow,*Quasi-conformal mappings in 𝑛-space and the rigidity of hyperbolic space forms*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 53–104. MR**0236383****[6]**C. J. Neugebauer,*Some inequalities related to Hölder’s inequality*, Proc. Amer. Math. Soc.**82**(1981), no. 4, 560–564. MR**614878**, 10.1090/S0002-9939-1981-0614878-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
26D20,
26A51

Retrieve articles in all journals with MSC: 26D20, 26A51

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0735413-7

Article copyright:
© Copyright 1984
American Mathematical Society