Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Localization of equivariant cohomology rings


Author: J. Duflot
Journal: Trans. Amer. Math. Soc. 284 (1984), 91-105
MSC: Primary 57S15; Secondary 20J06, 55N91
Erratum: Trans. Amer. Math. Soc. 290 (1985), 857-858.
MathSciNet review: 742413
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper is the "calculation" of the Borel equivariant cohomology ring $ {H^{\ast} }(EG \times_G\,X,{\mathbf{Z}}/p{\mathbf{Z}})$ localized at one of its minimal prime ideals. In case $ X$ is a point, the work of Quillen shows that the minimal primes $ {\mathfrak{P}_A}$ are parameterized by the maximal elementary abelian $ p$-subgroups $ A$ of $ G$ and the result is

$\displaystyle {H^{\ast} }{(BG,{\mathbf{Z}}/p{\mathbf{Z}})_{{\mathfrak{P}_A}}} \... ...{H^{\ast} }(B{C_G}(A),{\mathbf{Z}}/p{\mathbf{Z}})_{{\mathfrak{P}_A}}^{{W_G}(A)}$

. Here, $ {C_G}(A)$ is the centralizer of $ A$ in $ G$, and $ {W_G}(A) = {N_G}(A)/{C_G}(A)$, where $ {N_G}(A)$ is the normalizer of $ A$ in $ G$. An example is included.

References [Enhancements On Off] (What's this?)

  • [B] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR 0116341
  • [Br] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
  • [C-E] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum; Reprint of the 1956 original. MR 1731415
  • [D1] J. Duflot, Depth and equivariant cohomology, Comment. Math. Helv. 56 (1981), no. 4, 627–637. MR 656216, 10.1007/BF02566231
  • [H] Wu-yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, New York-Heidelberg, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85. MR 0423384
  • [M] Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
  • [Mui] Huỳnh Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 3, 319–369. MR 0422451
  • [Q1, Q2] Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 0298694
  • [T] Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S15, 20J06, 55N91

Retrieve articles in all journals with MSC: 57S15, 20J06, 55N91


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1984-0742413-X
Article copyright: © Copyright 1984 American Mathematical Society