Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Mean value properties of the Laplacian via spectral theory

Author: Robert S. Strichartz
Journal: Trans. Amer. Math. Soc. 284 (1984), 219-228
MSC: Primary 31C12; Secondary 22E30, 35P99, 43A85
MathSciNet review: 742422
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi ({z^2})$ be an even entire function of temperate exponential type, $ L$ a selfadjoint realization of $ - \Delta + c\,(x)$, where $ \Delta $ is the Laplace-Beltrami operator on a Riemannian manifold, and $ \phi \,(L)$ the operator given by spectral theory. A Paley-Wiener theorem on the support of $ \phi \,(L)$ is proved, and is used to show that $ Lu = \lambda u$ on a suitable domain implies $ \phi \,(L)\,u = \phi \,(\lambda)\,u$, as well as a generalization of Àsgeirsson's theorem. A concrete realization of the operators $ \phi \,(L)$ is given in the case of a compact Lie group or a noncompact symmetric space with complex isometry group.

References [Enhancements On Off] (What's this?)

  • [1] L. Asgeirsson, Über eine Mitterwertseigenshaft von Lösungen homogener linearer partieller Differentialgleichung $ 2$. Ordnung mit Konstanten Koefficienten, Math. Ann. 113 (1936), 321-346. MR 1513094
  • [2] P. R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Anal. 12 (1973), 401-414. MR 0369890 (51:6119)
  • [3] M. Flensted-Jensen, Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Functional Anal. 30 (1978), 106-146. MR 513481 (80f:43022)
  • [4] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. MR 0094407 (20:925)
  • [5] S. Helgason, Partial differential equations on Lie groups, Scand. Math. Congress XIII, Helsinki, 1957, pp. 110-115. MR 0106357 (21:5091)
  • [6] -, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299. MR 0117681 (22:8457)
  • [7] -, Analysis on Lie groups and homogeneous spaces, C.B.M.S. Regional Conf. Ser. in Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1972. MR 0316632 (47:5179)
  • [8] -, Wave equations on homogeneous spaces, preprint.
  • [9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [10] R. S. Strichartz, Multiplier transformations on compact Lie groups and algebras, Trans. Amer. Math. Soc. 193 (1974), 99-110. MR 0357688 (50:10156)
  • [11] R. Takahashi, Sur les réprésentations unitaire des groups de Lorentz généralizés, Bull. Soc. Math. France 91 (1963), 289-433. MR 0179296 (31:3544)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31C12, 22E30, 35P99, 43A85

Retrieve articles in all journals with MSC: 31C12, 22E30, 35P99, 43A85

Additional Information

Keywords: Laplace-Beltrami operator, spectral theory, mean value theorem, Asgeirsson's theorem, functions of the Laplacian, Paley-Wiener theorem, symmetric space, compact Lie group
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society