Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Moments of balanced measures on Julia sets

Authors: M. F. Barnsley and A. N. Harrington
Journal: Trans. Amer. Math. Soc. 284 (1984), 271-280
MSC: Primary 30D05; Secondary 30E05, 58F11
MathSciNet review: 742425
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By a theorem of S. Demko there exists a balanced measure on the Julia set of an arbitrary nonlinear rational transformation on the Riemann sphere. It is proved here that if the transformation admits an attractive or indifferent cycle, then there is a point with respect to which all the moments of a balanced measure exist; moreover, these moments can be calculated exactly. An explicit balanced measure is exhibited in an example where the Julia set is the whole sphere and for which the moments, with respect to any point, do not all exist.

References [Enhancements On Off] (What's this?)

  • [Ah] L. V. Ahlfors, Complex analysis, McGraw-Hill, New York, 1979. MR 510197 (80c:30001)
  • [Ak] N. I. Akhiezer, The classical moment problem, Hafner, New York, 1965.
  • [BGH-1] M. F. Barnsley, J. S. Geronimo and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. 7 (1982), 381-384. MR 663789 (84a:42031)
  • [BGH-2] -, On the invariant sets of a family of quadratic maps, Comm. Math. Phys. 88 (1983), 479-501. MR 702565 (85g:58055)
  • [BGH-3] -, Infinite dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc. 88 (1983), 625-630. MR 702288 (85a:30040)
  • [BGH-4] -, Geometry electrostatic measure and orthogonal polynomials on Julia sets for polynomials, Ergodic Theory Dynamical Systems (to appear). MR 753919 (86a:58052)
  • [BGH-5] -, Geometrical and electrical properties of some Julia sets, Stat. Phys. (submitted).
  • [BBM] J. Bellissard, D. Bessis and P. Moussa, Chaotic states for almost periodic Schrödinger operators, Phys. Rev. Lett. 49 (1982), 701-704. MR 669364 (83k:58052)
  • [Br] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. MR 0194595 (33:2805)
  • [By] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and physicists, Springer-Verlag, New York, 1954. MR 0060642 (15:702a)
  • [D] S. G. Demko, On balanced measures, preprint.
  • [E] J. P. Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys. 53 (1981), 643-654. MR 629208 (82j:58079)
  • [Fa] M. P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271; 48, 33-94, 208-314. MR 1504787
  • [Fe] M. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), 25-52. MR 0501179 (58:18601)
  • [FLM] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, 1982, preprint. MR 736568 (85m:58110b)
  • [G] L. Gaal, Classical Galois theory with examples, Markham, Chicago, Ill., 1971. MR 0280465 (43:6185)
  • [H] M. R. Herman, Exemples de fractions rationelles ayant une orbite dense sur la sphere de Riemann, Ecole Polytechnique, 1983, preprint. MR 771920 (86d:58055)
  • [J] G. Julia, Memoire sur l'iteration des fonctions rationelles, J. Math. Pures Appl. 4 (1918), 47-245.
  • [L] S. Lattès, Sur l'iteration des substitutions rationelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris 166 (1918), 26-28.
  • [Man] B. Mandelbrot, Fractals: Form, chance and dimension, Freeman, San Francisco, Calif., 1977. MR 0471493 (57:11224)
  • [Mas] D. Masson, Hilbert space and the Padè approximant, in The Padé Approximant in Theoretical Physics (Edited by G. A. Baker, Jr. and J. L. Gammel), Academic Press, New York and London, 1970, pp. 197-218. MR 0449282 (56:7587)
  • [PK] T. S. Pitcher and J. R. Kinney, Some connections between ergodic theory and iteration of polynomials, Ark. Mat. 8 (1968), 25-32. MR 0263125 (41:7730)
  • [Su] D. Sullivan, Iteration des fonctions analytiques complexes, C. R. Acad. Sci. Paris 294 (1982), 301. MR 658395 (83d:58061)
  • [W] H. S. Wall, Analytic theory of continued fractions, Van Nostrand, Princeton, N. J., 1958. MR 0025596 (10:32d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D05, 30E05, 58F11

Retrieve articles in all journals with MSC: 30D05, 30E05, 58F11

Additional Information

Keywords: Julia sets, orthogonal polynomials
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society