Universal families for conull FK spaces
Author:
A. K. Snyder
Journal:
Trans. Amer. Math. Soc. 284 (1984), 389399
MSC:
Primary 46A45; Secondary 40H05
MathSciNet review:
742431
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper considers the problem of determining a useful family of sequence spaces which is universal for conull FK spaces in the following sense: An FK space is conull if and only if it contains a member of the family. In the equivalent context of weak wedge spaces, an appropriate family of subspaces of boundedness domains of matrices is shown to be universal. Most useful is the fact that the members of this family exhibit unconditional sectional convergence. The latter phenomenon is known for wedge spaces. Another family of spaces which is universal for conull spaces among semiconservative spaces is provided. The spaces are designed to simplify gliding humps arguments. Improvements are thereby obtained for some pseudoconull type theorems of Bennett and Kalton. Finally, it is shown that conull spaces must contain pseudoconull BK algebras.
 [1]
G.
Bennett and N.
J. Kalton, 𝐹𝐾spaces containing
𝑐₀, Duke Math. J. 39 (1972),
561–582. MR 0310597
(46 #9695)
 [2]
G.
Bennett and N.
J. Kalton, Addendum to: “𝐹𝐾spaces containing
𝑐₀”, Duke Math. J. 39 (1972),
819–821. MR 0313758
(47 #2312)
 [3]
G.
Bennett, The gliding humps technique for
𝐹𝐾spaces, Trans. Amer. Math.
Soc. 166 (1972),
285–292. MR 0296564
(45 #5623), http://dx.doi.org/10.1090/S00029947197202965649
 [4]
G.
Bennett, A new class of sequence spaces with applications in
summability theory, J. Reine Angew. Math. 266 (1974),
49–75. MR
0344846 (49 #9585)
 [5]
J.
Copping, Inclusion theorems for conservative summation
methods, Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math.
20 (1958), 485–499. MR 0099552
(20 #5991)
 [6]
R. Devos, Distinguished subsets and matrix maps between spaces, Ph. D. dissertation, Lehigh University, 1971.
 [7]
D.
J. H. Garling, On topological sequence spaces, Proc. Cambridge
Philos. Soc. 63 (1967), 997–1019. MR 0218880
(36 #1964)
 [8]
Haskell
P. Rosenthal, On quasicomplemented subspaces of Banach spaces,
with an appendix on compactness of operators from
𝐿^{𝑝}(𝜇) to 𝐿^{𝑟}(𝜈),
J. Functional Analysis 4 (1969), 176–214. MR 0250036
(40 #3277)
 [9]
John
J. Sember, Variational 𝐹𝐾 spaces and twonorm
convergence, Math. Z. 119 (1971), 153–159. MR 0280908
(43 #6627)
 [10]
A.
K. Snyder, Conull and coregular 𝐹𝐾 spaces,
Math. Z. 90 (1965), 376–381. MR 0185315
(32 #2783)
 [11]
A.
K. Snyder, Consistency theory in semiconservative spaces,
Studia Math. 71 (1981/82), no. 1, 1–13. MR 651321
(83k:46014)
 [12]
A.
K. Snyder and A.
Wilansky, Inclusion theorems and semiconservative
𝐹𝐾 spaces, Rocky Mountain J. Math. 2
(1972), no. 4, 595–603. MR 0310496
(46 #9594)
 [13]
Albert
Wilansky, Summability through functional analysis,
NorthHolland Mathematics Studies, vol. 85, NorthHolland Publishing
Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 91.
MR 738632
(85d:40006)
 [14]
Karl
Zeller, Faktorfolgen bei Limitierungsverfahren, Math. Z.
56 (1952), 134–151 (German). MR 0049342
(14,158g)
 [1]
 G. Bennett and N. J. Kalton, spaces containing , Duke Math. J. 39 (1972), 561582. MR 0310597 (46:9695)
 [2]
 , Addendum to "spaces containing ", Duke Math. J. 39 (1972), 819821. MR 0313758 (47:2312)
 [3]
 G. Bennett, The gliding humps technique for spaces, Trans. Amer. Math. Soc. 166 (1972), 285292. MR 0296564 (45:5623)
 [4]
 , A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math. 266 (1974) 4975. MR 0344846 (49:9585)
 [5]
 J. Copping, Inclusion theorems for conservative summation methods, Nederl. Akad. Wetensch. Proc. Ser. A 61 (1958), 485499. MR 0099552 (20:5991)
 [6]
 R. Devos, Distinguished subsets and matrix maps between spaces, Ph. D. dissertation, Lehigh University, 1971.
 [7]
 D. J. H. Garling, On topological sequence spaces, Proc. Cambridge Philos. Soc. 63 (1967), 9971019. MR 0218880 (36:1964)
 [8]
 H. P. Rosenthal, Quasicomplemented subspaces of Banach spaces, J. Funct. Anal. 4 (1969), 176214. MR 0250036 (40:3277)
 [9]
 J. J. Sember, Variational spaces and twonorm convergence, Math. Z. 119 (1971), 153159. MR 0280908 (43:6627)
 [10]
 A. K. Snyder, Conull and coregular spaces, Math. Z. 90 (1965), 376381. MR 0185315 (32:2783)
 [11]
 , Consistency theory in semiconservative spaces, Studia Math. 71 (1982), 113. MR 651321 (83k:46014)
 [12]
 A. K. Snyder and A. Wilansky, Inclusion theorems and semiconservative spaces, Rocky Mountain Math. J. 2 (1972), 595603. MR 0310496 (46:9594)
 [13]
 A. Wilansky, Summability through functional analysis, NorthHolland, Amsterdam, 1984. MR 738632 (85d:40006)
 [14]
 K. Zeller, Factorfolgen bei limitierungsverfahren, Math. Z. 56 (1952), 134151. MR 0049342 (14:158g)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46A45,
40H05
Retrieve articles in all journals
with MSC:
46A45,
40H05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198407424311
PII:
S 00029947(1984)07424311
Keywords:
FK space,
conull,
weak wedge
Article copyright:
© Copyright 1984
American Mathematical Society
