Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ L\sp{2}$-cohomology of noncompact surfaces

Author: David R. DeBaun
Journal: Trans. Amer. Math. Soc. 284 (1984), 543-565
MSC: Primary 58A14; Secondary 30F30, 58G32, 60J15
MathSciNet review: 743732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is motivated by the question of whether nonzero $ {L^2}$-harmonic differentials exist on coverings of a Riemann surface of genus $ \geqslant 2$. Our approach will be via an analogue of the de Rham theorem. Some results concerning the invariance of $ {L^2}$-homology and the intersection number of $ {L^2}$-cycles are demonstrated. A growth estimate for triangulations of planar coverings of the two-holed torus is derived. Finally, the equivalence between the existence of $ {L^2}$-harmonic one-cycles and the transience of random walks on a planar surface is shown.

References [Enhancements On Off] (What's this?)

  • [Ah] Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100–134. MR 0036318
  • [Ahl] Lars Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), no. 1, 157–194 (German). MR 1555403, 10.1007/BF02420945
  • [AhS] Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
  • [At] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Soc. Math. France, Paris, 1976, pp. 43–72. Astérisque, No. 32-33. MR 0420729
  • [CFL] R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), no. 1, 32–74 (German). MR 1512478, 10.1007/BF01448839
  • [D] Jozef Dodziuk, de Rham-Hodge theory for 𝐿²-cohomology of infinite coverings, Topology 16 (1977), no. 2, 157–165. MR 0445560
  • [D1] Jozef Dodziuk, Sobolev spaces of differential forms and de Rham-Hodge isomorphism, J. Differential Geom. 16 (1981), no. 1, 63–73. MR 633624
  • [D2] -, Every covering of a compact Riemann surface of genus greater than one carries a non-trivial $ {L^2}$ harmonic differential (to appear).
  • [K] Shizuo Kakutani, Random walk and the type problem of Riemann surfaces, Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N. J., 1953, pp. 95–101. MR 0056100
  • [KSK] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, 2nd ed., Springer-Verlag, New York-Heidelberg-Berlin, 1976. With a chapter on Markov random fields, by David Griffeath; Graduate Texts in Mathematics, No. 40. MR 0407981
  • [L] Solomon Lefschetz, Introduction to Topology, Princeton Mathematical Series, vol. 11, Princeton University Press, Princeton, N. J., 1949. MR 0031708

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58A14, 30F30, 58G32, 60J15

Retrieve articles in all journals with MSC: 58A14, 30F30, 58G32, 60J15

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society