Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tensor products for the de Sitter group


Author: Robert P. Martin
Journal: Trans. Amer. Math. Soc. 284 (1984), 795-814
MSC: Primary 22E46; Secondary 81C40
DOI: https://doi.org/10.1090/S0002-9947-1984-0743745-1
MathSciNet review: 743745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The decomposition of the tensor product of a principal series representation with any other irreducible unitary representation of $ G$ is determined for the simply connected double covering, $ G = \operatorname{Spin}\,(4,1)$, of the DeSitter group.


References [Enhancements On Off] (What's this?)

  • [1] N. Anh, Restriction of the principal series of $ {\text{SL}}(n,C)$ to some reductive sub-groups, Pacific J. Math. 38 (1971), 295-313. MR 0327980 (48:6322)
  • [2] R. Boyer and R. Martin, The group $ {C^{\ast}}$-algebra of the DeSitter group, Proc. Amer. Math. Soc. 65 (1977), 177-184. MR 0473718 (57:13381)
  • [3] A. Breda, Uniformly bounded representations of the Lorentz groups, Ph.D. Dissertation, Washington University, 1982.
  • [4] J. Dixmier, Représentations intégrables du groupe de DeSitter, Bull. Soc. Math. France 89 (1961), 9-41. MR 0140614 (25:4031)
  • [5] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova and I. T. Todorov, Harmonic analysis on the $ n$-dimensional Lorentz group and its application to conformal quantum field theory, Lecture Notes in Phys., Vol. 63, Springer-Verlag, Berlin, Heidelberg and New York, 1977.
  • [6] R. Fabec, Localizable representations of the DeSitter group, J. Analyse Math. 35 (1979), 151-208. MR 555303 (81e:22020)
  • [7] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions, Ann. Sci. École Norm. Sup. (4) 5 (1972), 495-516. MR 0342641 (49:7387)
  • [8] A. W. Knapp and E. M. Stein, Intertwining operators for semi-simple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [9] R. A. Kunze and E. M. Stein, Uniformly bounded representations. III: Intertwining operators for the principal series on semi-simple groups, Amer. J. Math. 89 (1967), 385-442. MR 0231943 (38:269)
  • [10] G. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221. MR 0056611 (15:101a)
  • [11] R. Martin, On the decomposition of tensor products of principal series representations for real-rank one semisimple groups, Trans. Amer. Math. Soc. 201 (1975), 177-211. MR 0374341 (51:10541)
  • [12] -, Tensor products for $ {\text{SL(2}},k)$, Trans. Amer. Math. Soc. 239 (1978), 197-211. MR 487045 (80i:22033)
  • [13] -, Tensor products of principal series for the DeSitter group, Trans. Amer. Math. Soc. 265 (1981), 121-135. MR 607111 (83h:22024)
  • [14] L. Pukánszky, On the Kronecker products of irreducible representations of the $ 2 \times 2$ real unimodular group. I, Trans. Amer. Math. Soc. 100 (1961), 116-152. MR 0172962 (30:3177)
  • [15] J. Repka, Tensor products of unitary representations of $ {\text{SL}}_2(R)$, Amer. J. Math. 100 (1978), 747-774. MR 509073 (80g:22014)
  • [16] H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semi-simple Lie group, J. Funct. Anal. 13 (1973), 324-389. MR 0407206 (53:10989)
  • [17] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289-433. MR 0179296 (31:3544)
  • [18] E. Thieleker, The unitary representations of the generalized Lorentz groups, Trans. Amer. Math. Soc. 199 (1974), 327-367. MR 0379754 (52:659)
  • [19] N. J. Vilenkin, Special functions and the theory ofgroup representations, Transl. Math. Monographs, Vol. 22, Amer. Math. Soc., Providence, R.I., 1968. MR 0229863 (37:5429)
  • [20] G. Warner, Harmonic analysis on semi-simple Lie groups, Vols. 1, 2, Springer-Verlag, Berlin, Heidelberg and New York, 1972.
  • [21] F. Williams, Tensor products of principal series representations, Lecture Notes in Math., vol. 358, Springer-Verlag, Berlin and New York, 1973. MR 0349903 (50:2396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46, 81C40

Retrieve articles in all journals with MSC: 22E46, 81C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0743745-1
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society