Ramsey games

Authors:
A. Hajnal and Zs. Nagy

Journal:
Trans. Amer. Math. Soc. **284** (1984), 815-827

MSC:
Primary 04A20; Secondary 03E05, 03E55

MathSciNet review:
743746

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper deals with game-theoretic versions of the partition relations and introduced in [**2**]. The main results are summarized in the Introduction.

**[1]**J. E. Baumgartner,*Results and independence proofs in combinatorial set theory*, Doctoral Dissertation, University of California, Berkeley, California, 1970.**[2]**J. E. Baumgartner, F. Galvin, R. McKenzie and R. Laver,*Game theoretic versions of partition relations*, Infinite and Finite Sets, Colloquia Math. Soc. János Bolyai, Vol. 10, Keszthely, Hungary, 1973.**[3]**Keith J. Devlin,*Some weak versions of large cardinal axioms*, Ann. Math. Logic**5**(1972–1973), 291–325. MR**0363906****[4]**K. J. Devlin and J. B. Paris,*More on the free subset problem*, Ann. Math. Logic**5**(1972–1973), 327–336. MR**0329896****[5]**P. Erdös and R. Rado,*Combinatorial theorems on classifications of subsets of a given set*, Proc. London Math. Soc. (3)**2**(1952), 417–439. MR**0065615****[6]**A. Hajnal,*Proof of a conjecture of S. Ruziewicz*, Fund. Math.**50**(1961/1962), 123–128. MR**0131986****[7]**P. Komjath, Preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
04A20,
03E05,
03E55

Retrieve articles in all journals with MSC: 04A20, 03E05, 03E55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0743746-3

Article copyright:
© Copyright 1984
American Mathematical Society