Stability of the travelling wave solution of the FitzHugh-Nagumo system

Author:
Christopher K. R. T. Jones

Journal:
Trans. Amer. Math. Soc. **286** (1984), 431-469

MSC:
Primary 35B35; Secondary 35K55, 92A09

MathSciNet review:
760971

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Travelling wave solutions for the FitzHugh-Nagumo equations have been proved to exist, by various authors, close to a certain singular limit of the equations. In this paper it is proved that these waves are stable relative to the full system of partial differential equations; that is, initial values near (in the sup norm) to the travelling wave lead to solutions that decay to some translate of the wave in time. The technique used is the linearised stability criterion; the framework for its use in this context has been given by Evans [**6**-**9**]. The search for the spectrum leads to systems of linear ordinary differential equations. The proof uses dynamical systems arguments to analyse these close to the singular limit.

**[1]**M. Bramson,*Kolmogorov nonlinear diffusion equations*, Mem. Amer. Math. Soc. (to appear).**[2]**Gail A. Carpenter,*A geometric approach to singular perturbation problems with applications to nerve impulse equations*, J. Differential Equations**23**(1977), no. 3, 335–367. MR**0442379****[3]**Charles C. Conley,*On traveling wave solutions of nonlinear diffusion equations*, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Springer, Berlin, 1975, pp. 498–510. Lecture Notes in Phys., Vol. 38. MR**0454415****[4]**C. Conley and R. Gardner,*An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model*, Indiana Univ. Math. J.**33**(1984), no. 3, 319–343. MR**740953**, 10.1512/iumj.1984.33.33018**[5]**S. Dunbar,*Travelling waves of diffusive Volterra-Lother interaction equations*, Ph.D. Thesis, Univ. of Minnesota, 1981.**[6]**John W. Evans,*Nerve axon equations. I. Linear approximations*, Indiana Univ. Math. J.**21**(1971/72), 877–885. MR**0292531****[7]**John W. Evans,*Nerve axon equations. II. Stability at rest*, Indiana Univ. Math. J.**22**(1972/73), 75–90. MR**0323372****[8]**John W. Evans,*Nerve axon equations. III. Stability of the nerve impulse*, Indiana Univ. Math. J.**22**(1972/73), 577–593. MR**0393890****[9]**John W. Evans,*Nerve axon equations. IV. The stable and the unstable impulse*, Indiana Univ. Math. J.**24**(1974/75), no. 12, 1169–1190. MR**0393891****[10]**Neil Fenichel,*Persistence and smoothness of invariant manifolds for flows*, Indiana Univ. Math. J.**21**(1971/1972), 193–226. MR**0287106****[11]**J. Feroe,*Temporal stability of solitary impulse solutions of a nerve equation*, Biophys. J.**21**(1978), 103-110.**[12]**Paul C. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR**527914****[13]**Paul C. Fife and J. B. McLeod,*The approach of solutions of nonlinear diffusion equations to travelling front solutions*, Arch. Ration. Mech. Anal.**65**(1977), no. 4, 335–361. MR**0442480****[14]**R. FitzHugh,*Impulses and physiological states in theoretical models of nerve membranes*, Biophys. J.**1**(1961), 445-466.**[15]**Robert A. Gardner,*Existence and stability of travelling wave solutions of competition models: a degree theoretic approach*, J. Differential Equations**44**(1982), no. 3, 343–364. MR**661157**, 10.1016/0022-0396(82)90001-8**[16]**R. Gardner and J. Smoller,*The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley index*, J. Differential Equations**47**(1983), no. 1, 133–161. MR**684453**, 10.1016/0022-0396(83)90031-1**[17]**S. P. Hastings,*On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations*, Quart. J. Math. Oxford Ser. (2)**27**(1976), no. 105, 123–134. MR**0393759****[18]**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****[19]**Gene A. Klaasen and William C. Troy,*The stability of traveling wave front solutions of a reaction-diffusion systems*, SIAM J. Appl. Math.**41**(1981), no. 1, 145–167. MR**622879**, 10.1137/0141011**[20]**R. Langer,*Existence of homoclinic travelling wave solutions to the FitzHugh-Nagumo equations*. Ph.D. Thesis, Northeastern Univ., 1980.**[21]**J. Nagumo, S. Arimoto and S. Yoshizawa,*An active pulse transmission line simulating nerve axons*, Proc IRL**50**(1960), 2061-2070.**[22]**Jeffrey Rauch and Joel Smoller,*Qualitative theory of the FitzHugh-Nagumo equations*, Advances in Math.**27**(1978), no. 1, 12–44. MR**0487094****[23]**D. Terman,*Threshold phenomena in nonlinear diffusion equations*, Ph.D. Thesis, Univ. of Minnesota, 1980.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35B35,
35K55,
92A09

Retrieve articles in all journals with MSC: 35B35, 35K55, 92A09

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0760971-6

Keywords:
Travelling wave,
stability,
eigenvalue,
winding number

Article copyright:
© Copyright 1984
American Mathematical Society