Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Godbillon-Vey invariant of a transversely homogeneous foliation


Authors: Robert Brooks and William Goldman
Journal: Trans. Amer. Math. Soc. 286 (1984), 651-664
MSC: Primary 53C12; Secondary 55R40, 57R32
DOI: https://doi.org/10.1090/S0002-9947-1984-0760978-9
MathSciNet review: 760978
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A real projective foliation is a foliation $ \mathfrak{F}$ with a system of local coordinates transverse to $ \mathfrak{F}$ modelled on $ {\mathbf{R}}{P^1}$ (so that the coordinate changes are real linear fractional transformations). Given a closed manifold $ M$, there is but a finite set of values in $ {H^3}(M;{\mathbf{R}})$ which the Godbillon-Vey invariant of such foliations may assume. A bound on the possible values, in terms of the fundamental group, is computed. For $ M$ an oriented circle bundle over a surface, this finite set is explicitly computed.


References [Enhancements On Off] (What's this?)

  • [1] R. Blumenthal, Transversely homogeneous foliations, Ann. Inst. Fourier (Grenoble) 29 (1979), 143-158. MR 558593 (81h:57011)
  • [2] R. Brooks, On the smooth cohomology of groups of diffeomorphisms, Ph.D. thesis, Harvard University, 1977.
  • [3] -, Volumes and characteristic classes of foliations, Topology 18 (1979), 295-304. MR 551011 (81c:57024)
  • [4] J. L. Dupont, Simplicial deRham cohomology and characteristic classes of flat bundles, Topology 15 (1976), 233-246. MR 0413122 (54:1243)
  • [5] C. Godbillon and J. Vey, Un invariant des feuilletages de codimension un, C.R. Acad. Sci. Paris Sér. I. Math. 273 (1971), 92. MR 0283816 (44:1046)
  • [6] W. Goldman, Discontinuous groups and the Euler class, Ph.D. thesis, University of California, Berkeley, 1980.
  • [7] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5-99. MR 686042 (84h:53053)
  • [8] J. Heitsch, Secondary invariants of transversely homogeneous foliations, preprint. MR 817908 (88c:57030)
  • [9] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215-223. MR 0095518 (20:2020)
  • [10] D. Sullivan, A generalization of Milnor's inequality concerning affine foliations and affine manifolds, Comment. Math. Helv. 51 (1976), 183-199. MR 0418119 (54:6163)
  • [11] W. P. Thurston, Foliations and groupes of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-312. MR 0339267 (49:4027)
  • [12] -, Non-cobordant foliations of $ {S^3}$, Bull. Amer. Math. Soc. 78 (1972), 511-514.
  • [13] -, Foliations of three-manifolds which are circle bundles, Ph.D. thesis, University of California, Berkeley, 1972.
  • [14] W. Van Est, Une application d'une méthode de Cartan-Leray, Indag. Math. 17 (1955), 542-544. MR 0073108 (17:385a)
  • [15] J. Wood, Foliated $ {S^1}$-bundles and diffeomorphisms of $ {S^1}$, Dynamical Systems (M. Peixoto, ed.), Academic Press, New York, 1973. MR 0343294 (49:8036)
  • [16] H. Blaine Lawson, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418. MR 0343289 (49:8031)
  • [17] R. Bott, On the characteristic classes of group actions, Lecture Notes in Math., vol. 652, Springer-Verlag, Berlin and New York, 1978, pp. 26-61. MR 505649 (80a:57011)
  • [18] M. Hirsch and W. Thurston, Foliated bundles, invariant measures, and flat manifolds, Ann. of Math. (2) 101 (1975), 369-390. MR 0370615 (51:6842)
  • [19] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. MR 0024908 (9:567a)
  • [20] R. Brooks and W. Goldman, Volumes in Seifert space, Duke Math J. (to appear). MR 757951 (87d:53079)
  • [21] W. Thurston, Three-dimensional manifolds, Kleinian groups, and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-382. MR 648524 (83h:57019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C12, 55R40, 57R32

Retrieve articles in all journals with MSC: 53C12, 55R40, 57R32


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0760978-9
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society