The Godbillon-Vey invariant of a transversely homogeneous foliation

Authors:
Robert Brooks and William Goldman

Journal:
Trans. Amer. Math. Soc. **286** (1984), 651-664

MSC:
Primary 53C12; Secondary 55R40, 57R32

DOI:
https://doi.org/10.1090/S0002-9947-1984-0760978-9

MathSciNet review:
760978

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A real projective foliation is a foliation with a system of local coordinates transverse to modelled on (so that the coordinate changes are real linear fractional transformations). Given a closed manifold , there is but a finite set of values in which the Godbillon-Vey invariant of such foliations may assume. A bound on the possible values, in terms of the fundamental group, is computed. For an oriented circle bundle over a surface, this finite set is explicitly computed.

**[1]**R. Blumenthal,*Transversely homogeneous foliations*, Ann. Inst. Fourier (Grenoble)**29**(1979), 143-158. MR**558593 (81h:57011)****[2]**R. Brooks,*On the smooth cohomology of groups of diffeomorphisms*, Ph.D. thesis, Harvard University, 1977.**[3]**-,*Volumes and characteristic classes of foliations*, Topology**18**(1979), 295-304. MR**551011 (81c:57024)****[4]**J. L. Dupont,*Simplicial deRham cohomology and characteristic classes of flat bundles*, Topology**15**(1976), 233-246. MR**0413122 (54:1243)****[5]**C. Godbillon and J. Vey,*Un invariant des feuilletages de codimension un*, C.R. Acad. Sci. Paris Sér. I. Math.**273**(1971), 92. MR**0283816 (44:1046)****[6]**W. Goldman,*Discontinuous groups and the Euler class*, Ph.D. thesis, University of California, Berkeley, 1980.**[7]**M. Gromov,*Volume and bounded cohomology*, Inst. Hautes Études Sci. Publ. Math.**56**(1982), 5-99. MR**686042 (84h:53053)****[8]**J. Heitsch,*Secondary invariants of transversely homogeneous foliations*, preprint. MR**817908 (88c:57030)****[9]**J. Milnor,*On the existence of a connection with curvature zero*, Comment. Math. Helv.**32**(1958), 215-223. MR**0095518 (20:2020)****[10]**D. Sullivan,*A generalization of Milnor's inequality concerning affine foliations and affine manifolds*, Comment. Math. Helv.**51**(1976), 183-199. MR**0418119 (54:6163)****[11]**W. P. Thurston,*Foliations and groupes of diffeomorphisms*, Bull. Amer. Math. Soc.**80**(1974), 304-312. MR**0339267 (49:4027)****[12]**-,*Non-cobordant foliations of*, Bull. Amer. Math. Soc.**78**(1972), 511-514.**[13]**-,*Foliations of three-manifolds which are circle bundles*, Ph.D. thesis, University of California, Berkeley, 1972.**[14]**W. Van Est,*Une application d'une méthode de Cartan-Leray*, Indag. Math.**17**(1955), 542-544. MR**0073108 (17:385a)****[15]**J. Wood,*Foliated*-*bundles and diffeomorphisms of*, Dynamical Systems (M. Peixoto, ed.), Academic Press, New York, 1973. MR**0343294 (49:8036)****[16]**H. Blaine Lawson,*Foliations*, Bull. Amer. Math. Soc.**80**(1974), 369-418. MR**0343289 (49:8031)****[17]**R. Bott,*On the characteristic classes of group actions*, Lecture Notes in Math., vol. 652, Springer-Verlag, Berlin and New York, 1978, pp. 26-61. MR**505649 (80a:57011)****[18]**M. Hirsch and W. Thurston,*Foliated bundles, invariant measures, and flat manifolds*, Ann. of Math. (2)**101**(1975), 369-390. MR**0370615 (51:6842)****[19]**C. Chevalley and S. Eilenberg,*Cohomology theory of Lie groups and Lie algebras*, Trans. Amer. Math. Soc.**63**(1948), 85-124. MR**0024908 (9:567a)****[20]**R. Brooks and W. Goldman,*Volumes in Seifert space*, Duke Math J. (to appear). MR**757951 (87d:53079)****[21]**W. Thurston,*Three-dimensional manifolds, Kleinian groups, and hyperbolic geometry*, Bull. Amer. Math. Soc.**6**(1982), 357-382. MR**648524 (83h:57019)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C12,
55R40,
57R32

Retrieve articles in all journals with MSC: 53C12, 55R40, 57R32

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1984-0760978-9

Article copyright:
© Copyright 1984
American Mathematical Society