Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compact group actions and maps into $ K(\pi,1)$-spaces


Authors: Daniel H. Gottlieb, Kyung B. Lee and Murad Özaydin
Journal: Trans. Amer. Math. Soc. 287 (1985), 419-429
MSC: Primary 57S10; Secondary 55P20, 57S17
DOI: https://doi.org/10.1090/S0002-9947-1985-0766228-2
MathSciNet review: 766228
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ act on an aspherical manifold $ M$. If $ G$ is a compact Lie group acting effectively and homotopically trivially then $ G$ must be abelian. We prove a much more general form of this result, thus extending results of Donnelly and Schultz. Our method gives us a splitting result for torus actions complementing a result of Conner and Raymond. We also generalize a theorem of Schoen and Yau on homotopy equivariance.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Armstrong, The fundamental group of an orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968), 299-301. MR 0221488 (36:4540)
  • [2] -, Calculating the fundamental group of an orbit space, Proc. Amer. Math. Soc. 84 (1982), 267-271. MR 637181 (83a:55019)
  • [3] A. Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Math., Vol. 36, Springer-Verlag, New York, 1972. MR 0221507 (36:4559)
  • [4] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [5] P. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Univ. of Georgia Conf., 1969), Markham, Chicago, 1970, pp. 227-264. MR 0271958 (42:6839)
  • [6] -, Injective operations of the toral groups, Topology 10 (1971), 283-296. MR 0281218 (43:6937)
  • [7] -, Manifolds with few periodic homeomorphisms (Proc. 2nd Conf. on Compact Transformation Groups, Univ. of Mass., Amherst, 1971), Lecture Notes in Math., vol. 299, Springer-Verlag, New York, 1972, pp. 1-75. MR 0358835 (50:11294)
  • [8] H. Donnelly and R. Schultz, Compact group actions and maps into aspherical manifolds, Topology 21 (1982), 443-455. MR 670746 (84k:57024)
  • [9] D. H. Gottlieb, The Lefschetz number and Borsuk-Ulam Theorems, Pacific J. Math. 103 (1982), 29-37. MR 687962 (84m:55003)
  • [10] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235-265. MR 690845 (85e:32029)
  • [11] K. B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geom. 16 (1981), 255-269. MR 638791 (84k:57027)
  • [12] -, Topology, affine and isometric actions on flat Riemannian manifolds. II, Topology Appl. 13 (1982), 295-310. MR 651511 (84k:57028)
  • [13] -, Geometric realization of group extensions by the Seifert construction, Adv. in Math. (to appear). MR 767121 (86h:57043)
  • [14] S. Mac Lane, Homology, Academic Press, New York, 1963. MR 0156879 (28:122)
  • [15] F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 633-650. MR 0203715 (34:3564)
  • [16] R. Schoen and S.-T. Yau, Compact group actions and the topology of manifolds with nonnegative curvature, Topology 18 (1979), 361-380. MR 551017 (81a:53044)
  • [17] R. Schultz, Group actions on hypertoral manifolds. I, Topology Symposium (Siegen, 1979), Lecture Notes in Math., vol. 788, Springer-Verlag, New York, 1980, pp. 364-377. MR 585669 (81m:57030)
  • [18] H. Zieschang, E. Vogt and H. D. Caldeway, Surfaces and planar discontinuous groups, Lecture Notes in Math, vol. 835, Springer-Verlag, Berlin and New York, 1980. MR 606743 (82h:57002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S10, 55P20, 57S17

Retrieve articles in all journals with MSC: 57S10, 55P20, 57S17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0766228-2
Keywords: Group actions on manifolds, $ K(\pi ,1)$-spaces, fundamental groups
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society