Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A kinetic approach to general first order quasilinear equations


Authors: Yoshikazu Giga, Tetsuro Miyakawa and Shinnosuke Oharu
Journal: Trans. Amer. Math. Soc. 287 (1985), 723-743
MSC: Primary 35L60; Secondary 35Q20, 47H20, 76N15
DOI: https://doi.org/10.1090/S0002-9947-1985-0768737-9
MathSciNet review: 768737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a new method for constructing entropy solutions of first order quasilinear equations of conservation type, which is illustrated in terms of the kinetic theory of gases. Regarding a quasilinear equation as a model of macroscopic conservation laws in gas dynamics, we introduce as the corresponding microscopic model an auxiliary linear equation involving a real parameter $ \xi $ which plays the role of the velocity argument. Approximate solutions for the quasilinear equation are then obtained by integrating solutions of the linear equation with respect to the parameter $ \xi $. All of these equations are treated in the Fréchet space $ L_{{\text{loc}}}^1({R^n})$, and a convergence theorem for such approximate solutions to the entropy solutions is established with the aid of nonlinear semigroup theory.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis and A. Pazy, Convergence and approximation of nonlinear semigroups in Banach spaces, J. Funct. Anal. 9 (1972), 63-74. MR 0293452 (45:2529)
  • [2] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 0287357 (44:4563)
  • [3] M. G. Crandall, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108-132. MR 0316925 (47:5473)
  • [4] M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), 1-21. MR 551288 (81b:65079)
  • [5] Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J. 50 (1983), 505-515. MR 705037 (85g:35017)
  • [6] E. Giusti, Minimal surfaces and functions of bounded variation, Notes on Pure Math., no. 10, Australian National Univ., Canberra, 1977. MR 0638362 (58:30685)
  • [7] A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), 35-61. MR 693713 (85h:65188)
  • [8] Y. Kobayashi, The application of the product formula for semigroups to first order quasilinear equations, Hiroshima Math. J. (to appear).
  • [9] K. Kobayasi and S. Oharu, On nonlinear evolution operators associated with certain nonlinear equations of evolution, Lecture Notes Numer. Appl. Math. 2 (1980), 139-210. MR 684082 (84m:35029)
  • [10] S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243.
  • [11] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS Regional Conf. Ser. Appl. Math., no. 11, SIAM, Philadelphia, Pa., 1973. MR 0350216 (50:2709)
  • [12] W. Mazja, Einbettungssätze für Sobolewsche Räume, Teil 2, Teubner, Leipzig, 1980. MR 594779 (84i:46045)
  • [13] I. Miyadera and Y. Kobayashi, Convergence and approximation of nonlinear semigroups, Functional Analysis and Numerical Analysis, Japan-France Seminar, Tokyo and Kyoto (H. Fujita, ed.), 1976.
  • [14] S. Oharu and T. Takahashi, A convergence theorem of nonlinear semigroups and its application to first order quasilinear equations, J. Math. Soc. Japan 26 (1974), 126-160. MR 0341216 (49:5966)
  • [15] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. MR 0151737 (27:1721)
  • [16] Y. Brenier, Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement, C. R. Acad. Sci. Paris 292 (1981), 563-566. MR 614670 (82e:65119)
  • [17] -, Résolution d'équations d'évolution quasilinéaries en dimension $ N$ d'espace à l'aide d'équations linéaires en dimension $ N + 1$, J. Differential Equations 49 (1983).
  • [18] T. Miyakawa, A kinetic approximation of entropy solutions of first order quasilinear equations, Lecture Notes Numer. Appl. Anal. 6 (1983), 93-105. MR 839271 (87i:35117)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L60, 35Q20, 47H20, 76N15

Retrieve articles in all journals with MSC: 35L60, 35Q20, 47H20, 76N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0768737-9
Keywords: First order quasilinear equations, conservation laws, entropy condition, nonlinear semigroups
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society