Covers in free lattices

Authors:
Ralph Freese and J. B. Nation

Journal:
Trans. Amer. Math. Soc. **288** (1985), 1-42

MSC:
Primary 06B25

MathSciNet review:
773044

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the covering relation in finitely generated free lattices. The basic result is an algorithm which, given an element , finds all the elements which cover or are covered by (if any such elements exist). Using this, it is shown that covering chains in free lattices have at most five elements; in fact, all but finitely many covering chains in each free lattice contain at most three elements. Similarly, all finite intervals in are classified; again, with finitely many exceptions, they are all one-, two- or three-element chains.

**[1]**P. Crawley and R. P. Dilworth,*Algebraic theory of lattices*, Prentice-Hall, Englewood Cliffs, N. J., 1973.**[2]**Alan Day,*A simple solution to the word problem for lattices*, Canad. Math. Bull.**13**(1970), 253–254. MR**0268092****[3]**Alan Day,*Splitting lattices generate all lattices*, Algebra Universalis**7**(1977), no. 2, 163–169. MR**0434897****[4]**Alan Day,*Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices*, Canad. J. Math.**31**(1979), no. 1, 69–78. MR**518707**, 10.4153/CJM-1979-008-x**[5]**Alan Day and J. B. Nation,*A note on finite sublattices of free lattices*, Algebra Universalis**15**(1982), no. 1, 90–94. MR**663955**, 10.1007/BF02483711**[6]**Richard A. Dean,*Coverings in free lattices*, Bull. Amer. Math. Soc.**67**(1961), 548–549. MR**0133264**, 10.1090/S0002-9904-1961-10681-2**[7]**Ralph Freese,*Ideal lattices of lattices*, Pacific J. Math.**57**(1975), no. 1, 125–133. MR**0371751****[8]**-,*Some order theoretic questions about free lattices and free modular lattices*, Proc. Banff Sympos. on Ordered Sets, Reidel, Dordrecht, 1982.**[9]**Ralph Freese and J. B. Nation,*Projective lattices*, Pacific J. Math.**75**(1978), no. 1, 93–106. MR**500031****[10]**G. Grätzer,*General lattice theory*, Academic Press, New York, 1978.**[11]**Bjarni Jónsson,*Sublattices of a free lattice*, Canad. J. Math.**13**(1961), 256–264. MR**0123493****[12]**Bjarni Jónsson and James E. Kiefer,*Finite sublattices of a free lattice*, Canad. J. Math.**14**(1962), 487–497. MR**0137667****[13]**B. Jónsson and J. B. Nation,*A report on sublattices of a free lattice*, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) North-Holland, Amsterdam, 1977, pp. 223–257. Colloq. Math. Soc. János Bolyai, Vol. 17. MR**0472614****[14]**Ralph McKenzie,*Equational bases and nonmodular lattice varieties*, Trans. Amer. Math. Soc.**174**(1972), 1–43. MR**0313141**, 10.1090/S0002-9947-1972-0313141-1**[15]**J. B. Nation,*Bounded finite lattices*, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 531–533. MR**660892****[16]**J. B. Nation,*Finite sublattices of a free lattice*, Trans. Amer. Math. Soc.**269**(1982), no. 1, 311–337. MR**637041**, 10.1090/S0002-9947-1982-0637041-9**[17]**Philip M. Whitman,*Free lattices*, Ann. of Math. (2)**42**(1941), 325–330. MR**0003614****[18]**Philip M. Whitman,*Free lattices. II*, Ann. of Math. (2)**43**(1942), 104–115. MR**0006143****[19]**Bjarni Jónsson,*Varieties of lattices: some open problems*, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 421–436. MR**660878**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06B25

Retrieve articles in all journals with MSC: 06B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0773044-4

Article copyright:
© Copyright 1985
American Mathematical Society