Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Polar coordinates induced by actions of compact Lie groups

Author: Jiri Dadok
Journal: Trans. Amer. Math. Soc. 288 (1985), 125-137
MSC: Primary 22E15; Secondary 53C35
MathSciNet review: 773051
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected Lie subgroup of the real orthogonal group $ O(n)$. For the action of $ G$ on $ {{\mathbf{R}}^n}$, we construct linear subspaces $ \mathfrak{a}$ that intersect all orbits. We determine for which $ G$ there exists such an $ \mathfrak{a}$ meeting all the $ G$-orbits orthogonally; groups that act transitively on spheres are obvious examples. With few exceptions all possible $ G$ arise as the isotropy subgroups of Riemannian symmetric spaces.

References [Enhancements On Off] (What's this?)

  • [1] J. Dadok and V. Kac, Polar representations, J. Algebra (to appear). MR 778464 (86e:14023)
  • [2] J. Dadok and F. R. Harvey, Calibrations in $ {{\mathbf{R}}^6}$, Duke Math. J. 50 (1983), 1231-1243. MR 726326 (85a:53056)
  • [3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1981. MR 0145455 (26:2986)
  • [4] -, Analysis on Lie groups and homogeneous spaces, CBMS Regional Conf. Ser. in Math., no. 14, Amer. Math. Soc., Providence, R. I., 1972. MR 0316632 (47:5179)
  • [5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [6] G. A. Hunt, A theorem of Élie Cartan, Proc. Amer. Math. Soc. 7 (1956), 307-308. MR 0077075 (17:986c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 53C35

Retrieve articles in all journals with MSC: 22E15, 53C35

Additional Information

Keywords: Orbits, linear cross sections
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society