Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Analysis on analytic spaces and non-self-dual Yang-Mills fields


Author: N. P. Buchdahl
Journal: Trans. Amer. Math. Soc. 288 (1985), 431-469
MSC: Primary 32L25; Secondary 32J25, 81D25, 81E13
DOI: https://doi.org/10.1090/S0002-9947-1985-0776387-3
MathSciNet review: 776387
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a cohomological description of the Witten-Isenberg-Yasskin-Green generalization to the non-self-dual case of Ward's twistor construction for self-dual Yang-Mills fields. The groundwork for this description is presented in Part I: with a brief introduction to analytic spaces and differential forms thereon, it contains an investigation of the exactness of the holomorphic relative de Rham complex on formal neighbourhoods of submanifolds, results giving sufficient conditions for the invertibility of pull-back functors on categories of analytic objects, and a discussion of the extension problem for analytic objects in the context of the formalism earlier introduced. Part II deals with non-self-dual Yang-Mills fields: the Yang-Mills field and current are identified in terms of the Griffiths obstructions to extension, including a proof of Manin's result that "current = obstruction to third order". All higher order obstructions are identified, there being at most $ {N^2}$ for a bundle of rank $ N$. An ansatz for producing explicit examples of non-self-dual fields is obtained by using the correspondence. This ansatz generates $ {\text{SL}}(2,\mathbb{C})$ solutions with topological charge $ 1$ on $ {S^4}$.


References [Enhancements On Off] (What's this?)

  • [1] A. Actor, Classical solutions of $ {\text{SU}}(2)$ Yang-Mills theories, Rev. Modern Phys. 51 (1979), 461-525. MR 541884 (81b:81014)
  • [2] M. F. Atiyah et al., Construction of instantons, Phys. Lett. A 65 (1978), 185-187. MR 598562 (82g:81049)
  • [3] R. Bott, Homogeneous vector bundles, Ann. of Math. (2) 56 (1957), 203-248. MR 0089473 (19:681d)
  • [4] J.-P. Bourguignon and H. B. Lawson, Jr., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230. MR 612248 (82g:58026)
  • [5] N. P. Buchdahl, On the relative de Rham sequence, Proc. Amer. Math. Soc. 87 (1983), 363-366. MR 681850 (85f:58003)
  • [6] M. G. Eastwood, Ambitwistors, Twistor Newsletter 9 (1979).$ ^{1}$
  • [7] -, Some remarks on non-abelian sheaf cohomology, Twistor Newsletter 12 (1981).
  • [8] -, Formal thickenings of ambitwistors for curved space-time, Twistor Newsletter 17 (1984).
  • [9] -, The generalized Penrose-Ward transform, Math. Proc. Cambridge Philos. Soc. (to appear) MR 764506 (86f:32032)
  • [10] M. G. Eastwood, R. Penrose and R. O. Wells, Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), 305-351. MR 603497 (83d:81052)
  • [11] G. Fischer, Complex analytic geometry, Lecture Notes in Math., vol. 538, Springer, Berlin, 1976. MR 0430286 (55:3291)
  • [12] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. MR 0345092 (49:9831)
  • [13] H. Grauert and H. Kerner, Deformation von Singularitäten komplexen Räume, Math. Ann. 153 (1964), 236-260. MR 0170354 (30:592)
  • [14] P. A. Griffiths, The extension problem in complex analysis. II, Amer. J. Math. 88 (1966), 266-446. MR 0206980 (34:6796)
  • [15] R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton Univ. Press, Princeton, N.J., 1967. MR 0230326 (37:5888)
  • [16] L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam and London, 1973.
  • [17] L. P. Hughston and T. R. Hurd, Extensions of massless fields into $ \mathbb{C}{\mathbb{P}^5}$, Twistor Newsletter 12 (1981).
  • [18] J. Isenberg and P. B. Yasskin, Twistor description of non-self-dual Yang-Mills fields, Complex Manifold Techniques in Theoretical Physics (D. E. Lerner and P. D. Sommers, eds.), Research Notes in Math., vol. 32, Pitman, San Francisco and London, 1979. MR 564452 (81g:32023)
  • [19] J. Isenberg, P. B. Yasskin and P. S. Green, Non-self-dual gauge fields, Phys. Lett. 878 (1978), 462-464.
  • [20] C. Le Brun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), 209-231. MR 697071 (84e:32023)
  • [21] -, The first formal neighbourhood of ambitwistor space for curved space-time, Lett. Math. Phys. 6 (1982), 345-354. MR 677436 (84d:32044)
  • [22] Yu. I. Manin, Gauge fields and holomorphic geometry, J. Soviet Math. 21 (1983), 465-507.
  • [23] Yu. I. Manin and G. M. Khenkin, Yang-Mills-Dirac equations as Cauchy-Riemann equations in twistor space, Soviet J. Nuclear Phys. 35 (6) (1982), 941-950. MR 699918 (85e:32036)
  • [24] R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969), 38-39.
  • [25] -, Non-linear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52. MR 0439004 (55:11905)
  • [26] R. Pool, Some applications of complex geometry to mathematical physics, Ph. D. thesis, Rice Univ., 1981.
  • [27] H. J. Reiffen, Das Lemma von Poincaré für holomorphe Differential-formen auf komplexen Räume, Math. Z. 101 (1967), 269-284. MR 0223599 (36:6647)
  • [28] R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1978), 289-295. MR 0443823 (56:2186)
  • [29] -, Ansätze for self-dual Yang-Mills fields, Comm. Math. Phys. 80 (1981), 563-574. MR 628512 (82m:81059)
  • [30] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978), 394-398.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32L25, 32J25, 81D25, 81E13

Retrieve articles in all journals with MSC: 32L25, 32J25, 81D25, 81E13


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0776387-3
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society