Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Helical minimal immersions of compact Riemannian manifolds into a unit sphere


Author: Kunio Sakamoto
Journal: Trans. Amer. Math. Soc. 288 (1985), 765-790
MSC: Primary 53C42; Secondary 53C40
MathSciNet review: 776403
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An isometric immersion of a Riemannian manifold $ M$ into a Riemannian manifold $ \overline M $ is called helical if the image of each geodesic has constant curvatures which are independent of the choice of the particular geodesic. Suppose $ M$ is a compact Riemannian manifold which admits a minimal helical immersion of order $ 4$ into the unit sphere. If the Weinstein integer of $ M$ equals that of one of the projective spaces, then $ M$ is isometric to that projective space with its canonical metric.


References [Enhancements On Off] (What's this?)

  • [1] André-Claude Allamigeon, Propriétés globales des espaces de Riemann harmoniques, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 2, 91–132 (French). MR 0198391
  • [2] Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885
  • [3] Richard H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geom. 10 (1975), 253–276. MR 0370423
  • [4] Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
  • [5] John A. Little, Manifolds with planar geodesics, J. Differential Geometry 11 (1976), no. 2, 265–285. MR 0417992
  • [6] Hisao Nakagawa, On a certain minimal immersion of a Riemannian manifold into a sphere, Kodai Math. J. 3 (1980), no. 3, 321–340. MR 604477
  • [7] Kunio Sakamoto, Planar geodesic immersions, Tôhoku Math. J. (2) 29 (1977), no. 1, 25–56. MR 0470913
  • [8] Kunio Sakamoto, Helical immersions into a unit sphere, Math. Ann. 261 (1982), no. 1, 63–80. MR 675208, 10.1007/BF01456411
  • [9] Kunio Sakamoto, On a minimal helical immersion into a unit sphere, Geometry of geodesics and related topics (Tokyo, 1982) Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1984, pp. 193–211. MR 758654
  • [10] Kazumi Tsukada, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan 35 (1983), no. 2, 355–379. MR 692333, 10.2969/jmsj/03520355
  • [11] Kazumi Tsukada, Helical geodesic immersions of compact rank one symmetric spaces into spheres, Tokyo J. Math. 6 (1983), no. 2, 267–285. MR 732082, 10.3836/tjm/1270213869
  • [12] Nolan R. Wallach, Minimal immersions of symmetric spaces into spheres, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Dekker, New York, 1972, pp. 1–40. Pure and Appl. Math., Vol. 8. MR 0407774
  • [13] Alan Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geometry 9 (1974), 513–517. MR 0390968
  • [14] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C42, 53C40

Retrieve articles in all journals with MSC: 53C42, 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0776403-9
Keywords: Helical immersions, strongly harmonic manifolds, geodesics, Blaschke structure, cut loci, second fundamental forms
Article copyright: © Copyright 1985 American Mathematical Society