Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The bidual of the compact operators


Author: Theodore W. Palmer
Journal: Trans. Amer. Math. Soc. 288 (1985), 827-839
MSC: Primary 47D30; Secondary 46B20, 46M05, 47D15
DOI: https://doi.org/10.1090/S0002-9947-1985-0776407-6
MathSciNet review: 776407
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a Banach space such that $ {X^\ast}$ has the Radon-Nikodým property. If $ {X^\ast}$ also has the approximation property, then the Banach algebra $ B({X^{ \ast \ast }})$ of all bounded linear operators on $ {X^{\ast\ast}}$ is isometrically isomorphic (as an algebra) to the double dual $ {B_K}{(X)^{ \ast \ast }}$ of the Banach algebra of compact operators on $ X$ when $ {B_K}{(X)^{ \ast \ast }}$ is provided with the first Arens product. The chief result of this paper is a converse to the above statement. The converse is formulated in a strong fashion and a number of other results, including a formula for the second Arens product, are also given.


References [Enhancements On Off] (What's this?)

  • [1] R. Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1-19. MR 13, 372 MR 0044109 (13:372b)
  • [2] -, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 569 MR 0045941 (13:659f)
  • [3] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977. MR 56 #12216 MR 0453964 (56:12216)
  • [4] R. S. Doran and J. Wichmann, Approximate identities and factorization in Banach modules, Lecture Notes in Math., vol. 768, Springer-Verlag, Berlin, 1979. MR 83e #46044 MR 555240 (83e:46044)
  • [5] N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Interscience, New York, 1958. MR 22 #8302 MR 1009162 (90g:47001a)
  • [6] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. MR 2, 224; MR 3, 51 MR 0004725 (3:51e)
  • [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763 MR 0075539 (17:763c)
  • [8] J. Hennefeld, The Arens products and an imbedding theorem, Pacific J. Math. 29 (1969), 551-563. MR 40 #4774 MR 0251547 (40:4774)
  • [9] -, $ L(X)$ as a subalgebra of $ K{(X)^{ \ast \ast }}$, Illinois J. Math. 23 (1979), 681-686. MR 80j #47405 MR 540404 (80j:47057)
  • [10] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. No. 127 (1972). MR 51 #11130 MR 0374934 (51:11130)
  • [11] J. Johnson, Remark on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. MR 538857 (82k:47060)
  • [12] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Ergebnisse Math. Grenzgeb., Bd. 92, Springer-Verlag, Berlin, 1977. MR 58 #17766 MR 0500056 (58:17766)
  • [13] A. Pietsch, Operator ideals, Math. Monograph. 16, VEB Deutscher Verlag Wiss., Berlin, 1978. MR 81a #47112 MR 519680 (81a:47002)
  • [14] A. Szankowski, $ B(H)$ does not have the approximation property, Acta Math. 147 (1981), 89-108. MR 83a #46033 MR 631090 (83a:46033)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D30, 46B20, 46M05, 47D15

Retrieve articles in all journals with MSC: 47D30, 46B20, 46M05, 47D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0776407-6
Keywords: Compact operators, Arens products, approximation property, Radon-Nikodým property, nuclear operators
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society