Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Properties of center manifolds


Author: Jan Sijbrand
Journal: Trans. Amer. Math. Soc. 289 (1985), 431-469
MSC: Primary 58F14; Secondary 34C30
DOI: https://doi.org/10.1090/S0002-9947-1985-0783998-8
MathSciNet review: 783998
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The center manifold has a number of puzzling properties associated with the basic questions of existence, uniqueness, differentiability and analyticity which may cloud its profitable application in e.g. bifurcation theory. This paper aims to deal with some of these subtle properties.

Regarding existence and uniqueness, it is shown that the cut-off function appearing in the usual existence proof is responsible for the selection of a single center manifold, thereby hiding the inherent nonuniqueness. Conditions are given for different center manifolds at an equilibrium point to have a nonempty intersection. This intersection will include at least the families of stationary and periodic solutions crossing through the equilibrium. In the case of nonuniqueness the difference between any two center manifolds will be less than $ {c_1}\exp ({c_2}{x^{ - 1}})$ with $ {c_1}$ and $ {c_2}$ constants, which explains why the formal Taylor expansions of different center manifolds are the same, while the expansions do not converge.

The differentiability of a center manifold will in certain cases decrease when moving out of the origin and a simple example shows how the differentiability may be lost.

Center manifolds are usually not analytic; however, an analytic manifold may exist which contains all periodic solutions of a certain type but which may otherwise not be invariant. Using this manifold, a new and very simple proof of the Lyapunov subcenter theorem is given.


References [Enhancements On Off] (What's this?)

  • [1] R. Abraham and J. E. Marsden, Foundations of mechanics, 2nd ed., Benjamin-Cummings, Reading, Mass., 1978. MR 515141 (81e:58025)
  • [2] V. I. Arnold, Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Functional Anal. Appl. 11 (1977), 85-92. MR 0442987 (56:1362)
  • [3] Y. N. Bibikov, Local theory of nonlinear analytic ordinary differential equations, Lecture Notes in Math., Vol. 702, Springer-Verlag, Berlin, 1979. MR 547669 (83a:34004)
  • [4] J. Carr, Applications of centre manifold theory, Lecture Notes, Brown University, Providence, R.I., 1979.
  • [5] N. Chafee, A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl. 35 (1971), 312-348. MR 0277854 (43:3587)
  • [6] E. Cotton, Sur les solutions asymptotiques des équations différentiels, Ann. Sci. Ecole Norm. Sup. 28 (1911), 473-521. MR 1509144
  • [7] J. J. Duistermaat, On periodic solutions near equilibrium points of conservative systems, Arch. Rational Mech. Anal. 45 (1972), 143-160. MR 0377196 (51:13369)
  • [8] -, Stable manifolds, Preprint, University of Utrecht, Utrecht, The Netherlands, 1976.
  • [9] -, Periodic solutions near equilibrium points of Hamiltonian systems. Preprint, University of Utrecht, Utrecht, The Netherlands, 1980.
  • [10] J. J. Duistermaat and J. A. Vogel, The Moser-Weinstein method (work in progress).
  • [11] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98. MR 524817 (80m:58032)
  • [12] -, Center manifolds in bifurcation theory and singular perturbation theory, Preprint, University of British Columbia. Vancouver, B.C., Canada, 1978.
  • [13] J. K. Hale, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [14] P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc. 11 (1960), 610-620. MR 0121542 (22:12279)
  • [15] B. Hassard, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the Squid giant axon, J. Theoret. Biol. 71 (1978), 401-420. MR 0479443 (57:18870)
  • [16] B. Hassard and Y. H. Wan, Bifurcation formulae derived from center manifold theory, J. Math. Anal. Appl. 63 (1978), 297-312. MR 0488152 (58:7719)
  • [17] B. Hassard, N. D. Kazarinoff and Y. H. Wan. Theory and applications of Hopf bifurcation, esp. Appendix A. London Math. Soc. Lecture Notes, Vol. 41, Cambridge, 1981. MR 603442 (82j:58089)
  • [18] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes, University of Kentucky,
  • [19] M. W. Hirsch, C. C. Pugh and M. Shub, invariant manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, Berlin, 1977. MR 0501173 (58:18595)
  • [20] P. J. Holmes and J. E. Marsden, Bifurcations to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis, Automatica-J IFAC 14 (1978), 367-384. MR 0495662 (58:14327)
  • [21] P. J. Holmes. Editor, New approaches to nonlinear problems in dynamics, Proc. Asilomar Conf., 1979, SIAM. 1980. MR 584582 (81h:00006)
  • [22] G. Iooss, Bifurcations of maps and applications, Math. Series 36, North-Holland, Amsterdam, 1979. MR 531030 (81b:58014)
  • [23] N. D. Kazarinoff. Y. H. Wan and P. van den Driessche, Hopf bifurcation and stability of periodicsolutions of differential-difference and integro-differential equations, J. Inst. Math. Appl. 21 (1978), 461-478. MR 0492724 (58:11796)
  • [24] A. Kelley, The center manifold and integral manifolds for Hamiltonian systems, Notices Amer. Math. Soc. 12 (1965), 143-144.
  • [25] -, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546-570. MR 0221044 (36:4096)
  • [26] -, On the Lyapunov sub-center manifold, J. Math. Anal. Appl. 18 (1967), 472-478. MR 0216114 (35:6949)
  • [27] N. Kopell and L. N. Howard, Bifurcations and trajectories joining critical points. Adv. in Math. 18 (1975), 306-358. MR 0397078 (53:938)
  • [28] O. E. Lanford, III, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology (I. Stakgold, D. D. Joseph and D. H. Sattinger, eds.), Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin, 1972, pp. 159-192. MR 0371548 (51:7766)
  • [29] A. Lyapunov, Problème général de la stabilité du mouvement, Ann. of Math. Studies, No. 17, Princeton Univ. Press, Princeton, N.J., 1949. (Russian original Kharkow, 1892.)
  • [30] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, Berlin, 1976. MR 0494309 (58:13209)
  • [31] J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747. MR 0426052 (54:13998)
  • [32] -, Addendum to [31], Comm. Pure Appl. Math. 31 (1978), 529-530. MR 0467821 (57:7672)
  • [33] P. Negrini and A. Tesei, Attractivity and Hopf bifurcation in Banach spaces, J. Math. Anal. Appl. 78 (1980),204-221. MR 595777 (82f:58068)
  • [34] J. Palis and F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16 (1977), 335-345. MR 0474409 (57:14049)
  • [35] O. Perron, Uber Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungs-systemen, Math. Z. 29 (1928), 129-160. MR 1544998
  • [36] V. A. Pliss, The reduction principle in the theory of stability of motion, Dokl. Akad. Nauk SSSR 154 (1964), 1044-1046; English transi., Soviet Math. 5 (1964), 247-250. MR 0173056 (30:3271)
  • [37] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. MR 0467823 (57:7674)
  • [38] -, Periodic solutions of Hamiltonian systems: a survey, Preprint, University of Wisconsin, 1980.
  • [39] R. D. Richtmyer, Invariant manifolds and bifurcations in the Taylor problem (work in progress).
  • [40] D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167-192. MR 0284067 (44:1297)
  • [41] D. H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Math., vol. 309, Springer-Verlag, Berlin, 1973. MR 0463624 (57:3569)
  • [42] D. S. Schmidt, Hopfs bifurcation theorem and the center theorem of Lyapunov with resonance cases, J. Math. Anal. Appl. 63 (1978), 354-370. MR 0477298 (57:16832)
  • [43] P. R. Sethna, Bifurcation theory and averaging in mechanical systems, in [21].
  • [44] C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Springer-Verlag, Berlin, 1971. MR 0502448 (58:19464)
  • [45] J. Sijbrand, Studies in nonlinear stability and bifurcation theory, Chapter III, Ph.D. Thesis, 1981.
  • [46] S. J. van Strien, Center manifolds are not $ {C^\infty }$, Math. Z. 166 (1979), 143-145. MR 525618 (80j:58049)
  • [47] F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1973), 47-100. MR 0339292 (49:4052)
  • [48] -, Applications of global analysis. I, Comm. Math. Inst. Utrecht 3 (1974). MR 0431273 (55:4274)
  • [49] M. M. Vainberg and V. A. Trenogin, Theory of branching of solutions of nonlinear equations, Noordhoff, Leiden, 1974. (Russian original Moscow, 1969.) MR 0261416 (41:6029)
  • [50] F. Verhulst, Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies, Philos. Trans. Roy. Soc. London Ser. A 290 (1979), 435-465.
  • [51] Y. H. Wan, On the uniqueness of invariant manifolds, J. Differential Equations 24 (1977), 268-273. MR 0455047 (56:13288)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F14, 34C30

Retrieve articles in all journals with MSC: 58F14, 34C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0783998-8
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society